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Abstract

Many problems in information processing involve some form of dimen-
sionality reduction. In this paper, we introduce Locality Preserving Pro-
jections (LPP). These are linear projective maps that arise by solving a
variational problem that optimally preserves the neighborhood structure
of the data set. LPP should be seen as an alternative to Principal Com-
ponent Analysis (PCA) – a classical linear technique that projects the
data along the directions of maximal variance. When the high dimen-
sional data lies on a low dimensional manifold embedded in the ambient
space, the Locality Preserving Projections are obtained by finding the
optimal linear approximations to the eigenfunctions of the Laplace Bel-
trami operator on the manifold. As a result, LPP shares many of the
data representation properties of nonlinear techniques such as Laplacian
Eigenmaps or Locally Linear Embedding. Yet LPP is linear and more
crucially is defined everywhere in ambient space rather than just on the
training data points. This is borne out by illustrative examples on some
high dimensional data sets.

1. Introduction

Suppose we have a collection of data points of n-dimensional real vectors drawn from an
unknown probability distribution. In increasingly many cases of interest in machine learn-
ing and data mining, one is confronted with the situation where n is very large. However,
there might be reason to suspect that the “intrinsic dimensionality” of the data is much
lower. This leads one to consider methods of dimensionality reduction that allow one to
represent the data in a lower dimensional space.

In this paper, we propose a new linear dimensionality reduction algorithm, called Locality
Preserving Projections (LPP). It builds a graph incorporating neighborhood information
of the data set. Using the notion of the Laplacian of the graph, we then compute a trans-
formation matrix which maps the data points to a subspace. This linear transformation
optimally preserves local neighborhood information in a certain sense. The representation
map generated by the algorithm may be viewed as a linear discrete approximation to a con-
tinuous map that naturally arises from the geometry of the manifold [2]. The new algorithm
is interesting from a number of perspectives.

1. The maps are designed to minimize a different objective criterion from the classi-
cal linear techniques.



2. The locality preserving quality of LPP is likely to be of particular use in informa-
tion retrieval applications. If one wishes to retrieve audio, video, text documents
under a vector space model, then one will ultimately need to do a nearest neighbor
search in the low dimensional space. Since LPP is designed for preserving local
structure, it is likely that a nearest neighbor search in the low dimensional space
will yield similar results to that in the high dimensional space. This makes for an
indexing scheme that would allow quick retrieval.

3. LPP is linear. This makes it fast and suitable for practical application. While a
number of non linear techniques have properties (1) and (2) above, we know of no
other linear projective technique that has such a property.

4. LPP is defined everywhere. Recall that nonlinear dimensionality reduction tech-
niques like ISOMAP[6], LLE[5], Laplacian eigenmaps[2] are defined only on the
training data points and it is unclear how to evaluate the map for new test points.
In contrast, the Locality Preserving Projection may be simply applied to any new
data point to locate it in the reduced representation space.

5. LPP may be conducted in the original space or in the reproducing kernel Hilbert
space(RKHS) into which data points are mapped. This gives rise to kernel LPP.

As a result of all these features, we expect the LPP based techniques to be a natural al-
ternative to PCA based techniques in exploratory data analysis, information retrieval, and
pattern classification applications.

2. Locality Preserving Projections

2.1. The linear dimensionality reduction problem

The generic problem of linear dimensionality reduction is the following. Given a set
x1, x2, · · · , xm in Rn, find a transformation matrix A that maps these m points to a set
of points y1, y2, · · · , ym in Rl (l � n), such that yi ”represents” xi, where yi = AT xi.
Our method is of particular applicability in the special case where x1, x2, · · · , xm ∈ M
and M is a nonlinear manifold embedded in Rn.

2.2. The algorithm

Locality Preserving Projection (LPP) is a linear approximation of the nonlinear Laplacian
Eigenmap [2]. The algorithmic procedure is formally stated below:

1. Constructing the adjacency graph: Let G denote a graph with m nodes. We put
an edge between nodes i and j if xi and xj are ”close”. There are two variations:

(a) ε-neighborhoods. [parameter ε ∈ R] Nodes i and j are connected by an edge
if ‖xi − xj‖

2 < ε where the norm is the usual Euclidean norm in Rn.
(b) k nearest neighbors. [parameter k ∈ N] Nodes i and j are connected by an

edge if i is among k nearest neighbors of j or j is among k nearest neighbors
of i.

Note: The method of constructing an adjacency graph outlined above is correct
if the data actually lie on a low dimensional manifold. In general, however, one
might take a more utilitarian perspective and construct an adjacency graph based
on any principle (for example, perceptual similarity for natural signals, hyperlink
structures for web documents, etc.). Once such an adjacency graph is obtained,
LPP will try to optimally preserve it in choosing projections.

2. Choosing the weights: Here, as well, we have two variations for weighting the
edges. W is a sparse symmetric m×m matrix with Wij having the weight of the
edge joining vertices i and j, and 0 if there is no such edge.



(a) Heat kernel. [parameter t ∈ R]. If nodes i and j are connected, put

Wij = e−
‖xi−xj‖2

t

The justification for this choice of weights can be traced back to [2].
(b) Simple-minded. [No parameter]. Wij = 1 if and only if vertices i and j are

connected by an edge.

3. Eigenmaps: Compute the eigenvectors and eigenvalues for the generalized eigen-
vector problem:

XLXT a = λXDXT a (1)
where D is a diagonal matrix whose entries are column (or row, since W is sym-
metric) sums of W , Dii = ΣjWji. L = D − W is the Laplacian matrix. The ith

column of matrix X is xi.
Let the column vectors a0, · · · , al−1 be the solutions of equation (1), ordered ac-
cording to their eigenvalues, λ0 < · · · < λl−1. Thus, the embedding is as follows:

xi → yi = AT xi, A = (a0, a1, · · · , al−1)

where yi is a l-dimensional vector, and A is a n × l matrix.

3. Justification

3.1. Optimal Linear Embedding

The following section is based on standard spectral graph theory. See [4] for a comprehen-
sive reference and [2] for applications to data representation.

Recall that given a data set we construct a weighted graph G = (V,E) with edges connect-
ing nearby points to each other. Consider the problem of mapping the weighted graph G to
a line so that connected points stay as close together as possible. Let y = (y1, y2, · · · , ym)T

be such a map. A reasonable criterion for choosing a ”good” map is to minimize the fol-
lowing objective function [2] ∑

ij

(yi − yj)
2Wij

under appropriate constraints. The objective function with our choice of Wij incurs a heavy
penalty if neighboring points xi and xj are mapped far apart. Therefore, minimizing it is
an attempt to ensure that if xi and xj are ”close” then yi and yj are close as well.

Suppose a is a transformation vector, that is, yT = aT X , where the ith column vector of
X is xi. By simple algebra formulation, the objective function can be reduced to

1

2

∑
ij

(yi − yj)
2Wij =

1

2

∑
ij

(aT xi − aT xj)
2Wij

=
∑

i

aT xiDiixT
i a −

∑
ij

aT xiWijxT
j a = aT X(D − W )XT a = aT XLXT a

where X = [x1, x2, · · · , xm], and D is a diagonal matrix; its entries are column (or row,
since W is symmetric) sum of W, Dii = ΣjWij . L = D − W is the Laplacian matrix
[4]. Matrix D provides a natural measure on the data points. The bigger the value Dii

(corresponding to yi) is, the more ”important” is yi. Therefore, we impose a constraint as
follows:

yT Dy = 1 ⇒ aT XDXT a = 1

Finally, the minimization problem reduces to finding:

arg min
a

a
T

XDX
T
a= 1

aT XLXT a



The transformation vector a that minimizes the objective function is given by the minimum
eigenvalue solution to the generalized eigenvalue problem:

XLXT a = λXDXT a

It is easy to show that the matrices XLXT and XDXT are symmetric and positive semi-
definite. The vectors ai(i = 0, 2, · · · , l − 1) that minimize the objective function are given
by the minimum eigenvalue solutions to the generalized eigenvalue problem.

3.2. Geometrical Justification

The Laplacian matrix L (=D − W ) for finite graph, or [4], is analogous to the Laplace
Beltrami operator L on compact Riemannian manifolds. While the Laplace Beltrami oper-
ator for a manifold is generated by the Riemannian metric, for a graph it comes from the
adjacency relation.

Let M be a smooth, compact, d-dimensional Riemannian manifold. If the manifold is
embedded in Rn the Riemannian structure on the manifold is induced by the standard
Riemannian structure on Rn. We are looking here for a map from the manifold to the real
line such that points close together on the manifold get mapped close together on the line.
Let f be such a map. Assume that f : M → R is twice differentiable.

Belkin and Niyogi [2] showed that the optimal map preserving locality can be found by
solving the following optimization problem on the manifold:

arg min
‖f‖

L2(M)=1

∫
M

‖∇f‖2

which is equivalent to 1

arg min
‖f‖

L2(M)=1

∫
M

L(f)f

where the integral is taken with respect to the standard measure on a Riemannian mani-
fold. L is the Laplace Beltrami operator on the manifold, i.e. Lf = − div ∇(f). Thus,
the optimal f has to be an eigenfunction of L. The integral

∫
M

L(f)f can be discretely
approximated by 〈f(X), Lf(X)〉 = fT (X)Lf(X) on a graph, where

f(X) = [f(x1), f(x2, · · · , f(xm))]T , fT (X) = [f(x1), f(x2, · · · , f(xm))]

If we restrict the map to be linear, i.e. f(x) = aT x, then we have

f(X) = XT a ⇒ 〈f(X), Lf(X)〉 = fT (X)Lf(X) = aT XLXT a

The constraint can be computed as follows,

‖f‖2
L2(M) =

∫
M

|f(x)|2dx =

∫
M

(aT x)2dx =

∫
M

(aT xxT a)dx = aT (

∫
M

xxT dx)a

where dx is the standard measure on a Riemannian manifold. By spectral graph theory [4],
the measure dx directly corresponds to the measure for the graph which is the degree of
the vertex, i.e. Dii. Thus, |f‖2

L2(M) can be discretely approximated as follows,

‖f‖2
L2(M) = aT (

∫
M

xxT dx)a ≈ aT (
∑

i

xxT Dii)a = aT XDXT a

Finally, we conclude that the optimal linear projective map, i.e. f(x) = aT x, can be
obtained by solving the following objective function,

arg min
a

a
T

XDX
T
a= 1

aT XLXT a

1If M has a boundary, appropriate boundary conditions for f need to be assumed.



These projective maps are the optimal linear approximations to the eigenfunctions of the
Laplace Beltrami operator on the manifold. Therefore, they are capable of discovering the
nonlinear manifold structure.

3.3. Kernel LPP

Suppose that the Euclidean space Rn is mapped to a Hilbert space H through a nonlinear
mapping function φ : Rn → H. Let φ(X) denote the data matrix in the Hilbert space,
φ(X) = [φ(x1), φ(x2), · · · , φ(xm)]. Now, the eigenvector problem in the Hilbert space
can be written as follows:

[φ(X)LφT (X)]ν = λ[φ(X)DφT (X)]ν (2)

To generalize LPP to the nonlinear case, we formulate it in a way that uses dot product
exclusively. Therefore, we consider an expression of dot product on the Hilbert space H
given by the following kernel function:

K(xi,xj) = (φ(xi) · φ(xj)) = φT (xi)φ(xj)

Because the eigenvectors of (2) are linear combinations of φ(x1), φ(x2), · · · , φ(xm), there
exist coefficients αi, i = 1, 2, · · · ,m such that

ν =

m∑
i=1

αiφ(xi) = φ(X)α

where α = [α1, α2, · · · , αm]T ∈ Rm.

By simple algebra formulation, we can finally obtain the following eigenvector problem:

KLKα = λKDKα (3)

Let the column vectors α1, α2, · · · , αm be the solutions of equation (3). For a test point x,
we compute projections onto the eigenvectors νk according to

(νk · φ(x)) =
m∑

i=1

αk
i (φ(x) · φ(xi)) =

m∑
i=1

αk
i K(x,xi)

where αk
i is the ith element of the vector αk. For the original training points, the maps can

be obtained by y = Kα, where the ith element of y is the one-dimensional representation
of xi. Furthermore, equation (3) can be reduced to

Ly = λDy (4)

which is identical to the eigenvalue problem of Laplacian Eigenmaps [2]. This shows that
Kernel LPP yields the same results as Laplacian Eigenmaps on the training points.

4. Experimental Results

In this section, we will discuss several applications of the LPP algorithm. We begin with
two simple synthetic examples to give some intuition about how LPP works.

4.1. Simply Synthetic Example

Two simple synthetic examples are given in Figure 1. Both of the two data sets corre-
spond essentially to a one-dimensional manifold. Projection of the data points onto the
first basis would then correspond to a one-dimensional linear manifold representation. The
second basis, shown as a short line segment in the figure, would be discarded in this low-
dimensional example.



Figure 1: The first and third plots show the results of PCA. The second and forth plots
show the results of LPP. The line segments describe the two bases. The first basis is shown
as a longer line segment, and the second basis is shown as a shorter line segment. In this
example, LPP is insensitive to the outlier and has more discriminating power than PCA.

Figure 2: The handwritten digits (‘0’-‘9’) are mapped into a 2-dimensional space. The left
figure is a representation of the set of all images of digits using the Laplacian eigenmaps.
The middle figure shows the results of LPP. The right figure shows the results of PCA. Each
color corresponds to a digit.

LPP is derived by preserving local information, hence it is less sensitive to outliers than
PCA. This can be clearly seen from Figure 1. LPP finds the principal direction along the
data points at the left bottom corner, while PCA finds the principal direction on which the
data points at the left bottom corner collapse into a single point. Moreover, LPP can has
more discriminating power than PCA. As can be seen from Figure 1, the two circles are
totally overlapped with each other in the principal direction obtained by PCA, while they
are well separated in the principal direction obtained by LPP.

4.2. 2-D Data Visulization

An experiment was conducted with the Multiple Features Database [3]. This dataset con-
sists of features of handwritten numbers (‘0’-‘9’) extracted from a collection of Dutch
utility maps. 200 patterns per class (for a total of 2,000 patterns) have been digitized in
binary images. Digits are represented in terms of Fourier coefficients, profile correlations,
Karhunen-Love coefficients, pixel average, Zernike moments and morphological features.
Each image is represented by a 649-dimensional vector. These data points are mapped to
a 2-dimensional space using different dimensionality reduction algorithms, PCA, LPP, and
Laplacian Eigenmaps. The experimental results are shown in Figure 2. As can be seen,
LPP performs much better than PCA. LPPs are obtained by finding the optimal linear ap-
proximations to the eigenfunctions of the Laplace Beltrami operator on the manifold. As a
result, LPP shares many of the data representation properties of non linear techniques such
as Laplacian Eigenmap. However, LPP is computationally much more tractable.

4.3. Manifold of Face Images

In this subsection, we applied the LPP to images of faces. The face image data set used
here is the same as that used in [5]. This dataset contains 1965 face images taken from
sequential frames of a small video. The size of each image is 20× 28, with 256 gray levels



Figure 3: A two-
dimensional repre-
sentation of the set of
all images of faces
using the Locality
Preserving Projec-
tion. Representative
faces are shown next
to the data points
in different parts
of the space. As
can be seen, the
facial expression
and the viewing
point of faces change
smoothly.

Table 1: Face Recognition Results on Yale Database
LPP LDA PCA

dims 14 14 33
error rate (%) 16.0 20.0 25.3

per pixel. Thus, each face image is represented by a point in the 560-dimensional ambi-
ent space. Figure 3 shows the mapping results. The images of faces are mapped into the
2-dimensional plane described by the first two coordinates of the Locality Preserving Pro-
jections. It should be emphasized that the mapping from image space to low-dimensional
space obtained by our method is linear, rather than nonlinear as in most previous work. The
linear algorithm does detect the nonlinear manifold structure of images of faces to some
extent. Some representative faces are shown next to the data points in different parts of the
space. As can be seen, the images of faces are clearly divided into two parts. The left part
are the faces with closed mouth, and the right part are the faces with open mouth. This
is because that, by trying to preserve neighborhood structure in the embedding, the LPP
algorithm implicitly emphasizes the natural clusters in the data. Specifically, it makes the
neighboring points in the ambient space nearer in the reduced representation space, and
faraway points in the ambient space farther in the reduced representation space. The bot-
tom images correspond to points along the right path (linked by solid line), illustrating one
particular mode of variability in pose.

4.4. Face Recognition

PCA and LDA are the two most widely used subspace learning techniques for face recog-
nition [1][7]. These methods project the training sample faces to a low dimensional rep-
resentation space where the recognition is carried out. The main supposition behind this
procedure is that the face space (given by the feature vectors) has a lower dimension than
the image space (given by the number of pixels in the image), and that the recognition
of the faces can be performed in this reduced space. In this subsection, we consider the
application of LPP to face recognition.

The database used for this experiment is the Yale face database [8]. It is constructed at the



Yale Center for Computational Vision and Control. It contains 165 grayscale images of
15 individuals. The images demonstrate variations in lighting condition (left-light, center-
light, right-light), facial expression (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses. Preprocessing to locate the the faces was applied. Original images
were normalized (in scale and orientation) such that the two eyes were aligned at the same
position. Then, the facial areas were cropped into the final images for matching. The size
of each cropped image is 32 × 32 pixels, with 256 gray levels per pixel. Thus, each image
can be represented by a 1024-dimensional vector.

For each individual, six images were taken with labels to form the training set. The rest of
the database was considered to be the testing set. The training samples were used to learn
a projection. The testing samples were then projected into the reduced space. Recognition
was performed using a nearest neighbor classifier. In general, the performance of PCA,
LDA and LPP varies with the number of dimensions. We show the best results obtained by
them. The error rates are summarized in Table 1. As can be seen, LPP outperforms both
PCA and LDA.

5. Conclusions

In this paper, we propose a new linear dimensionality reduction algorithm called Locality
Preserving Projections. It is based on the same variational principle that gives rise to the
Laplacian Eigenmap [2]. As a result it has similar locality preserving properties.

Our approach also has several possible advantages over recent nonparametric techniques
for global nonlinear dimensionality reduction such as [2][5][6]. It yields a map which
is simple, linear, and defined everywhere (and therefore on novel test data points). The
algorithm can be easily kernelized yielding a natural non-linear extension.

Performance improvement of this method over Principal Component Analysis is demon-
strated through several experiments. Though our method is a linear algorithm, it is capable
of discovering the non-linear structure of the data manifold.
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