The Power of Selective Memory:
Self-Bounded Learning of Prediction Suffix Trees

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering
The Hebrew University, Jerusalem 91904, Israel
{of erd, shai s, si nger }@s. huji.ac.il

Abstract

Prediction suffix trees (PST) provide a popular and effective tool for tasks
such as compression, classification, and language modeling. In this pa-
per we take a decision theoretic view of PSTs for the task of sequence
prediction. Generalizing the notion of margin to PSTs, we present an on-
line PST learning algorithm and derive a loss bound for it. The depth of
the PST generated by this algorithm scales linearly with the length of the
input. We then describe a self-bounded enhancement of our learning al-
gorithm which automatically growstaounded-deptRPST. We also prove

an analogous mistake-bound for the self-bounded algorithm. The result
is an efficient algorithm that neither relies on a-priori assumptions on the
shape or maximal depth of the target PST nor does it require any param-
eters. To our knowledge, this is the first provably-correct PST learning
algorithm which generates a bounded-depth PST while being competi-
tive with any fixed PST determined in hindsight.

1 Introduction

Prediction suffix trees are elegant, effective, and well studied models for tasks such as
compression, temporal classification, and probabilistic modeling of sequences (see for in-
stance [13, 11, 7, 10, 2]). Different scientific communities gave different names to variants
of prediction suffix trees such as context tree weighting [13] and variable length Markov
models [11, 2]. A PST receives an input sequence of symbols, one symbol at a time, and
predicts the identity of the next symbol in the sequence based on the most recently ob-
served symbols. Techniques for finding a good prediction tree include online Bayesian
mixtures [13], tree growing based on PAC-learning [11], and tree pruning based on struc-
tural risk minimization [8]. All of these algorithms either assumeagpriori bound on the
maximal number of previous symbols which may be used to extend predictions or use a
pre-definedemplate-tree beyond which the learned tree cannot grow. Motivated by statis-
tical modeling of biological sequences, Apostolico and Bejerano [1] showed that the bound
on the maximal depth can be removed by devising a smart modification of Ron et. al's al-
gorithm [11] (and in fact many other variants), yielding an algorithm with time and space
requirements that are linear in the length of the input. However, when modeling very long
sequences, both the a-priori bound and the linear space modification might impose serious
computational problems.

In this paper we describe a variant of prediction trees for
which we are able to devise a learning algorithm that grows
bounded-depth trees, while remaining competitive with any
fixed prediction tree chosen in hindsight. The resulting
time and space requirements of our algorithm are bounded
and scale polynomially with the complexity of the best pre-
diction tree. Thus, we are able to sidestep the pitfalls of pre-
vious algorithms. The setting we employ is slightly more
general than context-based sequence modeling as we as-
sume that we are provided with both an input stream and an
output stream. For concreteness, we assume that the input
stream is a sequence of vecters x», ... (x; € R™) and

the output stream is a sequence of symhgls),, ... over ~ Figure 1: An illustration
a finite alphabe). We denote a sub-sequengg...,y; ©f the prediction process in-

of the output stream by] and the set of all possible se- ﬁ]utchei)g ezya;SSiTS':Tfi fomeXt
guences by*. We denote the length of a sequenrchy

|s|. Our goal is to correctly predict each symbol in the out-

put streamyy, i, On each time-stepwe predict the symba}; based on an arbitrarily
long context of previously observed output stream symhdt$, and based on the current
input vectorx,. For simplicity, we focus on the binary prediction case wh@te= 2 and

for convenience we usg = {—1,+1} (or {—, +} for short) as our output alphabet. Our
algorithms and analysis can be adapted to larger output alphabets using ideas from [5].

The hypotheses we use are confidence-rated and are of thé fofttx))* — R where the
sign ofh is the predicted symbol and the magnitudé g the confidence in this prediction.
Each hypothesis is parameterized by a triptet 7, g) wherew € R"™, 7 is a suffix-closed
subset ofy* andg is acontext functiorfrom 7 into R (7 is suffix closed ifvs € 7 it
holds that all of the suffixes af are also in7"). The prediction extended by a hypothesis
h = (w,T,g) for thet'th symbol is,

hxeylh) = wexe + Y 2g(yvl) . @)

A yﬁfilET

In words, the prediction is the sum of an inner product between the current input vector
x; with the weight vectow and the application of the functignto all the suffixes of the
output stream observed thus far that also belorfj.t&ince7 is a suffix-closed set, it can

be described as a rooted tree whose nodes are the sequences congtitlitiegchildren of
anodes € 7 are all the sequences € 7 (o €). Following the terminology of [11], we

use the ternprediction suffix tre¢PST) for7 and refer tas € 7 as a sequence and a node
interchangeably. We denote the length of the longest sequertéyndepth(7). Given

g, each node € 7 is associated with a valugs). Note that in the prediction process, the
contribution of each context!} is multiplied by a factor which is exponentially decreasing

in the length ofy!l. This type of demotion of long suffixes is common to most PST-
based approaches [13, 7, 10] and reflects the a-priori assumption that statistical correlations
tend to decrease as the time between events increases. An illustration of a PST where
T ={¢,—,+,+—,++,—++,+++}, with the associated prediction fgg given the
contexty? = ——+++ is shown in Fig. 1. The predicted value gf in the example is
sign(w-x; +271/2x (=1)+271 x44273/2 x 7). GivenT andg we define the extension

of g to all strings ove)* by settingg(s) = 0 for s ¢ 7. Using this extension, Eg. (1) can

be simplified to,

t—1
h(x,yT') = wexi + Y 27 g(yid) - 2
1=1

We use the online learning loss-bound model to analyze our algorithms. In the online
model, learning takes place in rounds. On each round, an instarisgresented to the

online algorithm, which in return predicts the next outpunswl. The predicted symbol,
denoted, is defined to be the sign éf,(x;, y{?). Then, the correct symbg} is revealed

and with the new input-output pafx,, ;) on hand, a new hypothesis; is generated
which will be used to predict the next output symbgl, ;. In our setting, the hypotheses

h: we generate are of the form given by Eq. (2). Most previous PST learning algorithms
employed probabilistic approaches for learning. In contrast, we use a decision theoretic
approach by adapting the notionmfarginto our setting. In the context of PSTs, this ap-
proach was first suggested by Eskin in [6]. We define the margin attained by the hypothesis
ht to beyhy (xq, yﬁ_l). Whenever the current symbgl and the output of the hypothesis
agree in their sign, the margin is positive. We would like our online algorithm to correctly
predict the output streamy, . ..,y with a sufficiently large margin of at least This
construction is common to many online and batch learning algorithms for classification
[12, 4]. Specifically, we use the hinge loss as our margin-based loss function which serves
as a proxy for the prediction error. Formally, the hinge loss attained on tasmifined as,

¢, = max {0,1 — y;h, (x4, y4") }. The hinge-loss equals zero when the margin exceeds

1 and otherwise grows linearly as the margin gets smaller. The online algorithms discussed
in this paper are designed to suffer small cumulative hinge-loss.

Our algorithms are analyzed by comparing their cumulative hinge-losses and prediction
errors with those of any fixed hypothesis = (w*, 7*, g*) which can be chosen in hind-
sight, after observing the entire input and output streams. In deriving our loss and mistake
bounds we take into account the complexityhdf Informally, the largef7* and the bigger

the coefficients of*(s), the more difficult it is to compete with*. The squared norm of

the context functiory is defined as,

lgl* = > (a(s) - €)

seT

The complexity of a hypothesis(andh* in particular) is defined as the sum |p&||?> and
llg]|?. Using the extension af to Y* we can evaluatég||> by summing over al € Y*.

We present two online algorithms for learning large-margin PSTs. The first incrementally
constructs a PST which grows linearly with the length of the input and output sequences,
and thus can be arbitrarily large. While this construction is quite standard and similar
methods were employed by previous PST-learning algorithms, it provides us with an in-
frastructure for our second algorithm which grows bounded-depth PSTs. We derive an
explicit bound on the maximal depth of the PSTs generated by this algorithm. We prove
that both algorithms are competitive with any fixed PST constructed in hindsight. To our
knowledge, this is the first provably correct construction of a PST-learning algorithm whose
space complexity does not depend on the length of the input-output sequences.

2 Learning PSTs of Unbounded Depth

Having described the online prediction paradigm and the form of hypotheses used, we
are left with the task of defining the initial hypothegis and the hypothesis update rule.

To facilitate our presentation, we assume that all of the instances presented to the online
algorithm have a bounded Euclidean norm, namigty]| < 1. First, we define the initial
hypothesis to bé; = 0. We do so by settingy; = (0,...,0), 7; = {e} andg;(-) = 0.

As a consequence, the first prediction always incurs a unit loss. Next, we define the updates
applied to the weight vectox,; and to the PST at the end of rouhdThe weight vector is
updated byw; 1 = w; + y:7ix;, wherer; = £;/(||x¢||* + 3). Note that if the margin
attained on this round is at leasthen/¢; = 0 and thusw;,; = w;. This type of update

is common to other online learning algorithms (e.g. [3]). We would like to note in passing
that the operationv, - x; in Eq. (2) can be replaced with an inner product defined via a
Mercer kernel. To see this, note that can be rewritten explicitly agf;i y; 7 X; and

initialize: w1 = (0,...,0), 71 = {€}, g1(s) = 0Vs € V*,
fort=1,2,...do
Receive an instance; s.t. ||x¢]| < 1
Define:j = max{i : yii € T;}
Calculateth; (x¢,yi") = we - x¢ + 23:1 2/2 g, (yih)
Predict:gj; = sign (ht (xt, yi’l))
Receivey; and suffer losst; = max {0,1 — y:hs (x4, y1") }
Setiry = £¢/ (||x¢]|> +3) and di=t—1

if (¢; < 1/2) then g 3
Set:; =0, P, = P;—1, di = 0, and continue to the next iteration g3
else § %
=]

Setid; = max {j, [2log, (27) — 2log, (VPZ + 7l — Pt) |} | 5 &
8 £

Set: P, = Pi1 + 2Tt2_dt/2 %A g
=)

Update weight vectorw, 1 = wy + yeTeXe
Update tree:
Toy1 = T U {yll :1<i<ds}
_ S ogi(s)Fy 282 if se{yll1<i<d}
ge1(8) = { (s) otherwise

Figure 2: The online algorithms for learning a PST. The codside the boxes defines the
base algorithm for learning unbounded-depth PSTs. Including the pseudocode inside the
boxes gives the self-bounded version.

thereforew, -x; = >, v;7; x; - x¢. Using a kernel operatdk’ simply amounts to replacing
the latter expression with, ;7 I (x;, x¢).

The update applied to the context functignalso depends on the scaling facter How-
ever,g, is updated only on those strings which participated in the predictigp, ofamely
strings of the forrrygji1 for 1 < i < t. Formally, forl < i < t our update takes the form
g1 (Y = gi(yth) + ye 279/2 7,. For any other string, g1 1(s) = g:(s). The pseudo-
code of our algorithm is given in Fig. 2. The following theorem states that the algorithm
in Fig. 2 is2-competitive with any fixed hypothesis for which ||g*|| is finite.

Theorem 1. Letx;y,...,xr be an input stream and let, ...,y be an output stream,
where evenk; € R”, ||x;|| < 1 and everyy; € {-1,1}. Leth* = (w*,7*,¢*) be an
arbitrary hypothesis such thdiy*|| < co and which attains the loss valués,, ¢4 on

the input-output streams. Lét,..., ¢ be the sequence of loss values attained by the
unbounded-depth algorithm in Fig. 2 on the input-output streams. Then it holds that,

T T
DG < AW+l I?) + 20 (6)
t=1

t=1

In particular, the above bounds the number of prediction mistakes made by the algorithm.

Proof. Foreveryt = 1,...,T defineA; = [|w; — w*||? — [[wy1 — w*||? and,
A * 2 * 2
Ay = Z (9:(s) = g7(s))" — Z (ge+1(s) = g*(s))” - 4)
sey* sey*

Note that||g;||? is finite for any value of and that||¢g*||? is finite due to our assumption,
thereforeA, is finite and well-defined. We prove the theorem by devising upper and lower

bounds on)_, (A + A,), beginning with the upper bound, A; is a telescopic sum
which collapses tgjw;, — w*||2 — ||w;11 — w*||%. Similarly,

A= Y (s ~g')" = Y (genl(s) — ') - (%)

l=h% sey*

Omitting negative terms and using the facts twat= (0,...,0) andg; () = 0, we get,

T
S (Ac+A) < WP+ X (@6 = WP+ gl ©

t=1 sey*

Having proven an upper bound 91, (A, + At), we turn to the lower bound. Firsty, can
be rewritten ag\; = [|w; — w*||> — ||(w¢+1 — w¢) + (w¢ — w*)||? and by expansion of the
right-hand term we get that; = —||w¢ 1 — w||* — 2(Wip1 — W) - (we —w*). Using the
value ofw,; as defined in the update rule of the algorithm (w= w; + y:7:x:) gives,

A = —7'152||Xt||2 — 2y e X - (W — W) @)

Next, we use similar manipulations to rewrile. Unifying the two sums that make uly;
in Eq. (4) and adding null terms of the forin= g,(s) — g:(s), we obtain,

A = Yy [0~ 09)” — ((a1(8) — 8)) + (s1ls) — 9°(5))) |
= Sy [(016 = 08)” = 2((9001(5) ~ 59) (91(5) ~ 9°))| -

Letd; =t — 1 as defined in Fig. 2. Using the fact that, ; differs fromg; only on strings
of the formy:}, whereg,11 (yi}) = g (yi}) + :27%/%7;, we can writeA, as,

dy dy
A= Y202 =23 2% (0 (i) - 0" (vED)) ®)
i=1 1=1
Summing Egs. (7-8) gives,
Aot B = = (l + 55 2) = 2nn(we - S 2 0 (vE))
+ 27 Yy (W* "X+ 2?21 272 g (y,‘é})) : ©)

Using Ef;l 2~% < 1 with the definitions ofh, andh* from Eq. (2), we get that,
A+ Ay > (%) +1) — 2my by (Xt,}”i_l) + 2my h* (xe,y') . (10)

Denote the right-hand side of Eq. (10) Byand recall that the loss is definedrasx{0, 1 —
yihe(x¢, yi1)}. Therefore, ift, > 0 then—y,hy (x4, yi) = ¢, — 1. Multiplying both sides
of this equality byr; gives —ry:h:(x;, yi~ ') = 7:(¢4; — 1). Now note that this equality
also holds wherf; = 0 since thenr; = 0 and both sides of the equality simply equal
zero. Similarly, we have thath* (x;, y'!') > 1 — ¢;. Plugging these two inequalities into
Eq. (10) gives that,

Ty > —72(xel?+ 1) +2m (6 — 1) + 27, (L= 47)

which in turn equals-72(||x¢||*> + 1) + 27 ¢, — 27, £;. The lower bound o, still holds
if we subtract from it the non-negative terfd'/2r, — 2-1/2¢7)2, yielding,

Ft = —Tt2(||xt||2+1)+2Tt£t_27—t£: — (27}2—27}6:—'—(6:)2/2)
= —re(lxell” +3) + 27l — (6)%/2 .

\%

Using the definition of; and using the assumption thiat,||? < 1, we get,

() 53 @) o p .2
Iy > — 7l + 21y — t2 = ||XtH;+3 - t2 > G4 = ()72 . (A1)

Since Eq. (10) implies thak, + A, > I';, summingA, + A, over all values of gives,

T A Lz 1 T
Z(At+At) > ZZ@ - 52(@)2 -
t=1 =1 =1

Combining the bound above with Eq. (6) gives the bound stated by the theorem. Finally, we
obtain a mistake bound by noting that whenever a prediction mistake oécirs,. [

We would like to note that the algorithm for learning unbouthdiepth PSTs constructs a
sequence of PSTY;, ..., 7r, such thatlepth(7;) may equak. Furthermore, the number

of new nodes added to the tree on rount on the order of, resulting in7; having

O(t?) nodes. However, PST implementation tricks in [1] can be used to reduce the space
complexity of the algorithm from quadratic to lineartin

3 Self-Bounded Learning of PSTs

The online learning algorithm presented in the previous section has one major drawback,
the PSTs it generates can keep growing with each online round. We now describe a mod-
ification to the algorithm which casts a limit on the depth of the PST that is learned. Our
technique does not rely on arbitrary assumptions on the structure of the tree (e.g. maxi-
mal tree depth) nor does it require any parameters. The algorithm determines the depth to
which the PST should be updated automatically, and is therefore namedittmunded
algorithm for PST learning. The self-bounded algorithm is obtained from the original un-
bounded algorithm by adding the lines enclosed in boxes in Fig. 2.

A new variabled, is calculated on every online iteration. On rounds where an update takes
place, the algorithm updates the PST up to depthadding nodes if necessary. Below
this depth, no nodes are added and the context function is not modified. The definition
of d; is slightly involved, however it enables us to prove that we remain competitive with
any fixed hypothesis (Thm. 2) while maintaining a bounded-depth PST (Thm. 3). A point
worth noting is that the criterion for performing updates has also changed. Before, the
online hypothesis was modified whenever> 0. Now, an update occurs only when

¢, > 1/2, tolerating small values of loss. Intuitively, this relaxed margin requirement is
what enables us to avoid deepening the tree. The algorithm is allowed to predict with lower
confidence and in exchange the PST can be kept small. The trade-off between PST size
and confidence of prediction is adjusted automatically, extending ideas from [9]. While the
following theorem provides a loss bound, this bound can be immediately used to bound the
number of prediction mistakes made by the algorithm.

Theorem 2. Letxy,...,x7r be an input stream and lef, ..., yr be an output stream,
where everk; € R”, ||x¢]] < 1 and everyy, € {-1,1}. Leth* = (w*,7*,¢*) be an
arbitrary hypothesis such thdiy*|| < co and which attains the loss valués,, £% on

the input-output streams. Lét, ¢ be the sequence of loss values attained by the self-
bounded algorithm in Fig. 2 on the input-output streams. Then the sum of squared-losses
attained on those rounds whefg> 1/2 is bounded by,

S8 < (avElel + 2w+ 2w)

t:ft>% t=1

Proof. We defineA, and A, as in the proof of Thm. 1. First note that the inequality in

Eq. (9) in the proof of Thm. 1 still holds. Using the fact th@f;l 2% < 1 with the
definitions ofh, andh* from Eq. (2), Eq. (9) becomes,

A+ A > — 2 (x> +1) — 27y by (XuYTI) + 2r y h* (meg 1)
— 2y Yisg,a 27 0" (v -

Using the Cauchy-Schwartz inequality we get that

t—1 ‘ t—1 \1/2 t—1 o\ 1/2
X 2P| < (X 2) (X o)) <2l

i=d¢+1 i=d¢+1 i=dy+1

(12)

Plugging the above into Eq. (12) and using the definitiof'ofrom the proof of Thm. 1
givesA, + A, > Ty — 27,274/2 llg*]l. Using the upper bound dry from Eq. (11) gives,

Ar+ Ay >ty — (0)2)2 — 27,2742 g7 . (13)
For everyl < t < T, defineL, = Z _, il and P, = Zﬁ | 7i217%/2 and letPy =
Lo = 0. Summing Eg. (13) overand comparing to the upper bound in Eq (6) we get,

T

< gl + 1w 11> + (1/2) Y_(6)* + llg"ll Pr . (14)

t=1

We now use an inductive argument to prove tiat< /L, forall0 < ¢ < T. This
inequality trivially holds fort = 0. Assume thaf? ; < L, ;. ExpandingP; we get that

2
PtQ = (Ptfl + Tt21_dt/2) = Ptgfl + Ptfl 22_dt/2 Tt + 22_dt Tt2 . (15)

We therefore need to show that the right-hand side of Eq. (15) is atipo$he definition
of d, implies that2=%/2 is at most((P2_, + n¢;)/? — P,_;) /(27;). Plugging this fact
into the right-hand side of Eq. (15) gives thidt cannot exceed’? ; + 7./;. Using the
inductive assumptionPf_1 < L, ; we getthatP? < L; | + 7{; = L; and the induc-
tive argument is proven. In particular, we have shown fat< /L. Combining this
inequality with Eq. (14) we get that

T

(VEr) — 91 VEr — 1P — w1 = (1/2) 328

t=1

The above equation is a quadratic inequality/ih from which it follows that\/L; can
be at most as large as the positive root of this equation, namely,

T
1 «
Lr < 5 (llg'l+ Glo' P +alwi P +230)%)") -

t=1

Using the the fact tha¥/a? + b2 < (a + b) (a,b > 0) we get that,

T
VIr < BB w5) (16)
t=1

If ¢, < 1/2thenr¢; = 0 and otherwise¢; > (7 /4. Therefore, the sum of over the
rounds for whict?; > 1/2 is less thanl L;, which yields the bound of the theorem. O

Note that if there exists a fixed hypothesis wjiit|| < oo which attains a margin af on

the entire input sequence, then the bound of Thm. 2 reduces to a constant. Our next theorem
states that the algorithm indeed produces bounded-depth PSTs. Its proof is omitted due to
the lack of space.

Theorem 3. Under the conditions of Thm. 2, 1€, . .. , 7 be the sequence of PSTs gen-
erated by the algorithm in Fig. 2. Then, fordll< ¢ < T,

T
1
depth(T)) < 9 + 2logy (2[lg"]| + w*| + (5 D_(6)?)/2 +1) .
t=1

The bound on tree depth given in Thm. 3 becomes particularly interesting when there exists
some fixed hypothesis* for which ", (¢;)? is finite and independent of the total length of

the output sequence, denotedyin this case, Thm. 3 guarantees that the depth of the PST
generated by the self-bounded algorithm is smaller than a constant which does not depend
onT. We also would like to emphasize that our algorithm is competitive even with a PST
which is deeper than the PST constructed by the algorithm. This can be accomplished by
allowing the algorithm’s predictions to attain lower confidence than the predictions made
by the fixed PST with which it is competing.

Acknowledgments This work was supported by the Programme of the European Com-
munity, under the PASCAL Network of Excellence, 1IST-2002-506778 and by the Israeli
Science Foundation grant number 522-04.

References

[1] G. Bejerano and A. Apostolico. Optimal amnesic probabilistic automata, or, how
to learn and classify proteins in linear time and spadeurnal of Computational
Biology, 7(3/4):381-393, 2000.

[2] P.Buhlmannand A.J. Wyner. Variable length markov chalie Annals of Statistics,
27(2):480-513, 1999.

[3] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. InAdvances in Neural Information Processing Systems 16, 2003.

[4] N. Cristianini and J. Shawe-TaylorAn Introduction to Support Vector Machines.
Cambridge University Press, 2000.

[5] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classificatidato
ceedings of the Twenty-First International Conference on Machine Learning, 2004.

[6] E. Eskin. Sparse Sequence Modeling with Applications to Computational Biology
and Intrusion Detection. PhD thesis, Columbia University, 2002.

[7] D.P. Helmbold and R.E. Schapire. Predicting nearly as well as the best pruning of a
decision treeMachine Learning, 27(1):51-68, April 1997.

[8] M. Kearns and Y. Mansour. A fast, bottom-up decision tree pruning algorithm with
near-optimal generalization. FProceedings of the Fourteenth International Confer-
ence on Machine Learning, 1996.

[9] P. Auer, N. Cesa-Bianchiand C. Gentile. Adaptive and self-confident on-line learning
algorithms.Journal of Computer and System Sciences, 64(1):48-75, 2002.

[10] F.C. Pereiraand Y. Singer. An efficient extension to mixture techniques for prediction
and decision treesvlachine Learning, 36(3):183—-199, 1999.

[11] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: learning probabilistic
automata with variable memory lengtiachine Learning, 25(2):117-150, 1996.

[12] V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[13] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method:
basic propertieslEEE Transactions on Information Theory, 41(3):653—-664, 1995.

