
The Power of Selective Memory:
Self-Bounded Learning of Prediction Suffix Trees

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{oferd,shais,singer}@cs.huji.ac.il

Abstract

Prediction suffix trees (PST) provide a popular and effective tool for tasks
such as compression, classification, and language modeling. In this pa-
per we take a decision theoretic view of PSTs for the task of sequence
prediction. Generalizing the notion of margin to PSTs, we present an on-
line PST learning algorithm and derive a loss bound for it. The depth of
the PST generated by this algorithm scales linearly with the length of the
input. We then describe a self-bounded enhancement of our learning al-
gorithm which automatically grows abounded-depthPST. We also prove
an analogous mistake-bound for the self-bounded algorithm. The result
is an efficient algorithm that neither relies on a-priori assumptions on the
shape or maximal depth of the target PST nor does it require any param-
eters. To our knowledge, this is the first provably-correct PST learning
algorithm which generates a bounded-depth PST while being competi-
tive with any fixed PST determined in hindsight.

1 Introduction

Prediction suffix trees are elegant, effective, and well studied models for tasks such as
compression, temporal classification, and probabilistic modeling of sequences (see for in-
stance [13, 11, 7, 10, 2]). Different scientific communities gave different names to variants
of prediction suffix trees such as context tree weighting [13] and variable length Markov
models [11, 2]. A PST receives an input sequence of symbols, one symbol at a time, and
predicts the identity of the next symbol in the sequence based on the most recently ob-
served symbols. Techniques for finding a good prediction tree include online Bayesian
mixtures [13], tree growing based on PAC-learning [11], and tree pruning based on struc-
tural risk minimization [8]. All of these algorithms either assume ana-priori bound on the
maximal number of previous symbols which may be used to extend predictions or use a
pre-definedtemplate-tree beyond which the learned tree cannot grow. Motivated by statis-
tical modeling of biological sequences, Apostolico and Bejerano [1] showed that the bound
on the maximal depth can be removed by devising a smart modification of Ron et. al’s al-
gorithm [11] (and in fact many other variants), yielding an algorithm with time and space
requirements that are linear in the length of the input. However, when modeling very long
sequences, both the a-priori bound and the linear space modification might impose serious
computational problems.

0

1 4

7

−3

−2

−1

Figure 1: An illustration
of the prediction process in-
duced by a PST. The context
in this example is: + + +

In this paper we describe a variant of prediction trees for
which we are able to devise a learning algorithm that grows
bounded-depth trees, while remaining competitive with any
fixed prediction tree chosen in hindsight. The resulting
time and space requirements of our algorithm are bounded
and scale polynomially with the complexity of the best pre-
diction tree. Thus, we are able to sidestep the pitfalls of pre-
vious algorithms. The setting we employ is slightly more
general than context-based sequence modeling as we as-
sume that we are provided with both an input stream and an
output stream. For concreteness, we assume that the input
stream is a sequence of vectorsx1,x2, . . . (xt ∈ R

n) and
the output stream is a sequence of symbolsy1, y2, . . . over
a finite alphabetY. We denote a sub-sequenceyi, . . . , yj

of the output stream byyj
i and the set of all possible se-

quences byY∗. We denote the length of a sequences by
|s|. Our goal is to correctly predict each symbol in the out-
put streamy1, y2, On each time-stept we predict the symbolyt based on an arbitrarily
long context of previously observed output stream symbols,y

t-1
1 , and based on the current

input vectorxt. For simplicity, we focus on the binary prediction case where|Y| = 2 and
for convenience we useY = {−1,+1} (or {−,+} for short) as our output alphabet. Our
algorithms and analysis can be adapted to larger output alphabets using ideas from [5].

The hypotheses we use are confidence-rated and are of the formh : X×Y∗ → R where the
sign ofh is the predicted symbol and the magnitude ofh is the confidence in this prediction.
Each hypothesis is parameterized by a triplet(w, T , g) wherew ∈ R

n, T is a suffix-closed
subset ofY∗ andg is a context functionfrom T into R (T is suffix closed if∀ s ∈ T it
holds that all of the suffixes ofs are also inT). The prediction extended by a hypothesis
h = (w, T , g) for thet’th symbol is,

h(xt,y
t-1
1) = w · xt +

∑

i: y
t-1
t-i ∈T

2-i/2 g
(

y
t-1
t-i

)

. (1)

In words, the prediction is the sum of an inner product between the current input vector
xt with the weight vectorw and the application of the functiong to all the suffixes of the
output stream observed thus far that also belong toT . SinceT is a suffix-closed set, it can
be described as a rooted tree whose nodes are the sequences constitutingT . The children of
a nodes ∈ T are all the sequencesσs ∈ T (σ ∈ Y). Following the terminology of [11], we
use the termprediction suffix tree(PST) forT and refer tos ∈ T as a sequence and a node
interchangeably. We denote the length of the longest sequence inT by depth(T). Given
g, each nodes ∈ T is associated with a valueg(s). Note that in the prediction process, the
contribution of each contextyt-1

t-i is multiplied by a factor which is exponentially decreasing
in the length ofyt-1

t-i . This type of demotion of long suffixes is common to most PST-
based approaches [13, 7, 10] and reflects the a-priori assumption that statistical correlations
tend to decrease as the time between events increases. An illustration of a PST where
T = {ε,−,+,+−,++,−++,+++}, with the associated prediction fory6 given the
contexty5

1 = −−+++ is shown in Fig. 1. The predicted value ofy6 in the example is
sign(w ·xt +2−1/2×(−1)+2−1×4+2−3/2×7). GivenT andg we define the extension
of g to all strings overY∗ by settingg(s) = 0 for s 6∈ T . Using this extension, Eq. (1) can
be simplified to,

h(xt,y
t-1
1) = w · xt +

t−1
∑

i=1

2-i/2 g
(

y
t-1
t-i

)

. (2)

We use the online learning loss-bound model to analyze our algorithms. In the online
model, learning takes place in rounds. On each round, an instancext is presented to the

online algorithm, which in return predicts the next output symbol. The predicted symbol,
denoted̂yt is defined to be the sign ofht(xt,y

t-1
1). Then, the correct symbolyt is revealed

and with the new input-output pair(xt, yt) on hand, a new hypothesisht+1 is generated
which will be used to predict the next output symbol,yt+1. In our setting, the hypotheses
ht we generate are of the form given by Eq. (2). Most previous PST learning algorithms
employed probabilistic approaches for learning. In contrast, we use a decision theoretic
approach by adapting the notion ofmargin to our setting. In the context of PSTs, this ap-
proach was first suggested by Eskin in [6]. We define the margin attained by the hypothesis
ht to beytht(xt,y

t−1

1). Whenever the current symbolyt and the output of the hypothesis
agree in their sign, the margin is positive. We would like our online algorithm to correctly
predict the output streamy1, . . . , yT with a sufficiently large margin of at least1. This
construction is common to many online and batch learning algorithms for classification
[12, 4]. Specifically, we use the hinge loss as our margin-based loss function which serves
as a proxy for the prediction error. Formally, the hinge loss attained on roundt is defined as,
`t = max

{

0, 1 − ytht

(

xt,y
t-1
1

)}

. The hinge-loss equals zero when the margin exceeds
1 and otherwise grows linearly as the margin gets smaller. The online algorithms discussed
in this paper are designed to suffer small cumulative hinge-loss.

Our algorithms are analyzed by comparing their cumulative hinge-losses and prediction
errors with those of any fixed hypothesish? = (w?, T ?, g?) which can be chosen in hind-
sight, after observing the entire input and output streams. In deriving our loss and mistake
bounds we take into account the complexity ofh?. Informally, the largerT ? and the bigger
the coefficients ofg?(s), the more difficult it is to compete withh?. The squared norm of
the context functiong is defined as,

‖g‖2 =
∑

s∈T

(g(s))2 . (3)

The complexity of a hypothesish (andh? in particular) is defined as the sum of‖w‖2 and
‖g‖2. Using the extension ofg toY? we can evaluate‖g‖2 by summing over alls ∈ Y?.

We present two online algorithms for learning large-margin PSTs. The first incrementally
constructs a PST which grows linearly with the length of the input and output sequences,
and thus can be arbitrarily large. While this construction is quite standard and similar
methods were employed by previous PST-learning algorithms, it provides us with an in-
frastructure for our second algorithm which grows bounded-depth PSTs. We derive an
explicit bound on the maximal depth of the PSTs generated by this algorithm. We prove
that both algorithms are competitive with any fixed PST constructed in hindsight. To our
knowledge, this is the first provably correct construction of a PST-learning algorithm whose
space complexity does not depend on the length of the input-output sequences.

2 Learning PSTs of Unbounded Depth

Having described the online prediction paradigm and the form of hypotheses used, we
are left with the task of defining the initial hypothesish1 and the hypothesis update rule.
To facilitate our presentation, we assume that all of the instances presented to the online
algorithm have a bounded Euclidean norm, namely,‖xt‖ ≤ 1. First, we define the initial
hypothesis to beh1 ≡ 0. We do so by settingw1 = (0, . . . , 0), T1 = {ε} andg1(·) ≡ 0.
As a consequence, the first prediction always incurs a unit loss. Next, we define the updates
applied to the weight vectorwt and to the PST at the end of roundt. The weight vector is
updated bywt+1 = wt + ytτtxt, whereτt = `t/(‖xt‖2 + 3). Note that if the margin
attained on this round is at least1 then`t = 0 and thuswt+1 = wt. This type of update
is common to other online learning algorithms (e.g. [3]). We would like to note in passing
that the operationwt · xt in Eq. (2) can be replaced with an inner product defined via a
Mercer kernel. To see this, note thatwt can be rewritten explicitly as

∑t−1

i=1
yiτi xi and

initialize: w1 = (0, . . . , 0), T1 = {ε}, g1(s) = 0 ∀s ∈ Y?, P0 = 0

for t = 1, 2, . . . do
Receive an instancext s.t.‖xt‖ ≤ 1

Define:j = max{i : y
t-1
t-i ∈ Tt}

Calculate:ht

`

xt,y
t-1
1

´

= wt · xt +
Pj

i=1
2-i/2 gt

`

y
t-1
t-i

´

Predict:ŷt = sign
`

ht

`

xt,y
t-1
1

´´

Receiveyt and suffer loss:̀ t = max
˘

0, 1 − ytht

`

xt,y
t-1
1

´¯

Set:τt = `t/
`

‖xt‖
2 + 3

´

and dt = t − 1

if (`t ≤ 1/2) then
Set:τt = 0, Pt = Pt−1, dt = 0, and continue to the next iteration

else

Set:dt = max
n

j ,
l

2 log2 (2τt) − 2 log2

“

p

P 2
t-1 + τt`t − Pt-1

”mo

Set:Pt = Pt-1 + 2τt2
-dt/2

m
odification

required
for

self-bounded
version

Update weight vector:wt+1 = wt + ytτtxt

Update tree:
Tt+1 = Tt ∪ {yt-1

t-i : 1 ≤ i ≤ dt}

gt+1(s) =



gt(s) + yt 2-|s|/2 τt if s ∈ {yt-1
t-i : 1 ≤ i ≤ dt}

gt(s) otherwise

Figure 2: The online algorithms for learning a PST. The code outside the boxes defines the
base algorithm for learning unbounded-depth PSTs. Including the pseudocode inside the
boxes gives the self-bounded version.

thereforewt ·xt =
∑

i yiτi xi ·xt. Using a kernel operatorK simply amounts to replacing
the latter expression with

∑

i yiτiK(xi,xt).

The update applied to the context functiongt also depends on the scaling factorτt. How-
ever,gt is updated only on those strings which participated in the prediction ofŷt, namely
strings of the formy

t-1
t-i for 1 ≤ i < t. Formally, for1 ≤ i < t our update takes the form

gt+1(y
t-1
t-i) = gt(y

t-1
t-i) + yt 2-i/2 τt. For any other strings, gt+1(s) = gt(s). The pseudo-

code of our algorithm is given in Fig. 2. The following theorem states that the algorithm
in Fig. 2 is2-competitive with any fixed hypothesish? for which‖g?‖ is finite.

Theorem 1. Let x1, . . . ,xT be an input stream and lety1, . . . , yT be an output stream,
where everyxt ∈ R

n, ‖xt‖ ≤ 1 and everyyt ∈ {-1, 1}. Let h? = (w?, T ?, g?) be an
arbitrary hypothesis such that‖g?‖ < ∞ and which attains the loss values`?

1, . . . , `
?
T on

the input-output streams. Let`1, . . . , `T be the sequence of loss values attained by the
unbounded-depth algorithm in Fig. 2 on the input-output streams. Then it holds that,

T
∑

t=1

`2t ≤ 4
(

‖w?‖2 + ‖g?‖2
)

+ 2
T

∑

t=1

(`?
t)

2
.

In particular, the above bounds the number of prediction mistakes made by the algorithm.

Proof. For everyt = 1, . . . , T define∆t = ‖wt − w
?‖2 − ‖wt+1 − w

?‖2 and,

∆̂t =
∑

s∈Y∗

(

gt(s) − g?(s)
)2 −

∑

s∈Y∗

(

gt+1(s) − g?(s)
)2

. (4)

Note that‖gt‖2 is finite for any value oft and that‖g?‖2 is finite due to our assumption,
therefore∆̂t is finite and well-defined. We prove the theorem by devising upper and lower

bounds on
∑

t(∆t + ∆̂t), beginning with the upper bound.
∑

t ∆t is a telescopic sum
which collapses to‖w1 − w

?‖2 − ‖wt+1 − w
?‖2. Similarly,

T
∑

t=1

∆̂t =
∑

s∈Y∗

(

g1(s) − g?(s)
)2 −

∑

s∈Y∗

(

gt+1(s) − g?(s)
)2

. (5)

Omitting negative terms and using the facts thatw1 = (0, . . . , 0) andg1(·) ≡ 0, we get,

T
∑

t=1

(

∆t + ∆̂t

)

≤ ‖w?‖2 +
∑

s∈Y∗

(g?(s))
2

= ‖w?‖2 + ‖g?‖2 . (6)

Having proven an upper bound on
∑

t(∆t +∆̂t), we turn to the lower bound. First,∆t can
be rewritten as∆t = ‖wt−w

?‖2−‖(wt+1−wt)+(wt−w
?)‖2 and by expansion of the

right-hand term we get that∆t = −‖wt+1−wt‖2−2(wt+1−wt) · (wt−w
?). Using the

value ofwt+1 as defined in the update rule of the algorithm (wt+1 = wt + ytτtxt) gives,

∆t = − τ2
t ‖xt‖2 − 2 yt τt xt · (wt − w

?) . (7)

Next, we use similar manipulations to rewritê∆t. Unifying the two sums that make up̂∆t

in Eq. (4) and adding null terms of the form0 = gt(s) − gt(s), we obtain,

∆̂t =
∑

s∈Y∗

[

(

gt(s) − g?(s)
)2 −

(

(

gt+1(s) − gt(s)
)

+
(

gt(s) − g?(s)
)

)2]

=
∑

s∈Y∗

[

−
(

gt+1(s) − gt(s)
)2 − 2

(

(

gt+1(s) − gt(s)
)(

gt(s) − g?(s)
)

)]

.

Let dt = t − 1 as defined in Fig. 2. Using the fact thatgt+1 differs fromgt only on strings
of the formy

t-1
t-i , wheregt+1

(

y
t-1
t-i

)

= gt

(

y
t-1
t-i

)

+ yt2
-i/2τt, we can write∆̂t as,

∆̂t =

dt
∑

i=1

−2-i τ2
t − 2

dt
∑

i=1

yt 2-i/2 τt

(

gt

(

y
t-1
t-i

)

− g?
(

y
t-1
t-i

))

. (8)

Summing Eqs. (7-8) gives,

∆t + ∆̂t = −τ2
t

(

‖xt‖2 +
∑dt

i=1
2-i

)

− 2τt yt

(

wt · xt +
∑dt

i=1
2-i/2 gt

(

y
t-1
t-i

)

)

+ 2τt yt

(

w
? · xt +

∑dt

i=1
2-i/2 g?

(

y
t-1
t-i

)

)

. (9)

Using
∑dt

i=1
2−i ≤ 1 with the definitions ofht andh? from Eq. (2), we get that,

∆t + ∆̂t ≥ − τ2
t (‖xt‖2 + 1) − 2τt yt ht

(

xt,y
t−1

1

)

+ 2τt yt h?
(

xt,y
t−1

1

)

. (10)

Denote the right-hand side of Eq. (10) byΓt and recall that the loss is defined asmax{0, 1−
ytht(xt,y

t-1
1)}. Therefore, if̀ t > 0 then−ytht(xt,y

t-1
1) = `t−1. Multiplying both sides

of this equality byτt gives−τtytht(xt,y
t−1

1) = τt(`t − 1). Now note that this equality
also holds wheǹ t = 0 since thenτt = 0 and both sides of the equality simply equal
zero. Similarly, we have thatyth

?(xt,y
t-1
1) ≥ 1 − `?

t . Plugging these two inequalities into
Eq. (10) gives that,

Γt ≥ − τ2
t (‖xt‖2 + 1) + 2τt (`t − 1) + 2τt (1 − `?

t) ,

which in turn equals−τ2
t (‖xt‖2 + 1) + 2τt `t − 2τt `?

t . The lower bound onΓt still holds
if we subtract from it the non-negative term(21/2τt − 2−1/2`?

t)
2, yielding,

Γt ≥ −τ2
t (‖xt‖2 + 1) + 2τt `t − 2τt `?

t −
(

2τ2
t − 2τt`

?
t + (`?

t)
2/2

)

= −τ2
t (‖xt‖2 + 3) + 2τt `t − (`?

t)
2/2 .

Using the definition ofτt and using the assumption that‖xt‖2 ≤ 1, we get,

Γt ≥ − τt`t + 2τt`t −
(`?

t)
2

2
=

`2t
‖xt‖2 + 3

− (`?
t)

2

2
≥ `2t /4 − (`?

t)
2/2 . (11)

Since Eq. (10) implies that∆t + ∆̂t ≥ Γt, summing∆t + ∆̂t over all values oft gives,

T
∑

t=1

(

∆t + ∆̂t

)

≥ 1

4

T
∑

t=1

`2t − 1

2

T
∑

t=1

(`?
t)

2 .

Combining the bound above with Eq. (6) gives the bound stated by the theorem. Finally, we
obtain a mistake bound by noting that whenever a prediction mistake occurs,`t ≥ 1.

We would like to note that the algorithm for learning unbounded-depth PSTs constructs a
sequence of PSTs,T1, . . . , TT , such thatdepth(Tt) may equalt. Furthermore, the number
of new nodes added to the tree on roundt is on the order oft, resulting inTt having
O(t2) nodes. However, PST implementation tricks in [1] can be used to reduce the space
complexity of the algorithm from quadratic to linear int.

3 Self-Bounded Learning of PSTs

The online learning algorithm presented in the previous section has one major drawback,
the PSTs it generates can keep growing with each online round. We now describe a mod-
ification to the algorithm which casts a limit on the depth of the PST that is learned. Our
technique does not rely on arbitrary assumptions on the structure of the tree (e.g. maxi-
mal tree depth) nor does it require any parameters. The algorithm determines the depth to
which the PST should be updated automatically, and is therefore named theself-bounded
algorithm for PST learning. The self-bounded algorithm is obtained from the original un-
bounded algorithm by adding the lines enclosed in boxes in Fig. 2.

A new variabledt is calculated on every online iteration. On rounds where an update takes
place, the algorithm updates the PST up to depthdt, adding nodes if necessary. Below
this depth, no nodes are added and the context function is not modified. The definition
of dt is slightly involved, however it enables us to prove that we remain competitive with
any fixed hypothesis (Thm. 2) while maintaining a bounded-depth PST (Thm. 3). A point
worth noting is that the criterion for performing updates has also changed. Before, the
online hypothesis was modified whenever`t > 0. Now, an update occurs only when
`t > 1/2, tolerating small values of loss. Intuitively, this relaxed margin requirement is
what enables us to avoid deepening the tree. The algorithm is allowed to predict with lower
confidence and in exchange the PST can be kept small. The trade-off between PST size
and confidence of prediction is adjusted automatically, extending ideas from [9]. While the
following theorem provides a loss bound, this bound can be immediately used to bound the
number of prediction mistakes made by the algorithm.

Theorem 2. Let x1, . . . ,xT be an input stream and lety1, . . . , yT be an output stream,
where everyxt ∈ R

n, ‖xt‖ ≤ 1 and everyyt ∈ {-1, 1}. Let h? = (w?, T ?, g?) be an
arbitrary hypothesis such that‖g?‖ < ∞ and which attains the loss values`?

1, . . . , `
?
T on

the input-output streams. Let`1, . . . , `T be the sequence of loss values attained by the self-
bounded algorithm in Fig. 2 on the input-output streams. Then the sum of squared-losses
attained on those rounds where`t > 1/2 is bounded by,

∑

t:`t>
1

2

`2t ≤
(

(1 +
√

5) ‖g?‖ + 2 ‖w?‖ +
(

2

T
∑

t=1

(`?
t)

2

)1/2)2

.

Proof. We define∆t and∆̂t as in the proof of Thm. 1. First note that the inequality in
Eq. (9) in the proof of Thm. 1 still holds. Using the fact that

∑dt

i=1
2−i ≤ 1 with the

definitions ofht andh? from Eq. (2), Eq. (9) becomes,

∆t + ∆̂t ≥ − τ2
t (‖xt‖2 + 1) − 2τt yt ht

(

xt,y
t−1

1

)

+ 2τt yt h?
(

xt,y
t−1

1

)

− 2τtyt

∑t−1

i=dt+1
2-i/2 g?

(

y
t-1
t-i

)

.
(12)

Using the Cauchy-Schwartz inequality we get that

∣

∣

∣

t−1
∑

i=dt+1

2-i/2 g?
(

y
t-1
t-i

)

∣

∣

∣
≤

(

t−1
∑

i=dt+1

2-i
)1/2 (

t−1
∑

i=dt+1

(

g?
(

y
t-1
t-i

))2
)1/2

≤ 2-dt/2 ‖g?‖ .

Plugging the above into Eq. (12) and using the definition ofΓt from the proof of Thm. 1
gives∆t + ∆̂t ≥ Γt − 2τt2

-dt/2 ‖g?‖. Using the upper bound onΓt from Eq. (11) gives,

∆t + ∆̂t ≥ τt`t − (`?
t)

2/2 − 2 τt2
-dt/2 ‖g?‖ . (13)

For every1 ≤ t ≤ T , defineLt =
∑t

i=1
τi`i andPt =

∑t
i=1

τi2
1−di/2, and letP0 =

L0 = 0. Summing Eq. (13) overt and comparing to the upper bound in Eq. (6) we get,

LT ≤ ‖g?‖2 + ‖w?‖2 + (1/2)

T
∑

t=1

(`?
t)

2 + ‖g?‖ PT . (14)

We now use an inductive argument to prove thatPt ≤
√

Lt for all 0 ≤ t ≤ T . This
inequality trivially holds fort = 0. Assume thatP 2

t−1 ≤ Lt−1. ExpandingPt we get that

P 2
t =

(

Pt−1 + τt2
1−dt/2

)2

= P 2
t−1 + Pt−1 22−dt/2 τt + 22−dt τ2

t . (15)

We therefore need to show that the right-hand side of Eq. (15) is at mostLt. The definition
of dt implies that2−dt/2 is at most

(

(P 2
t−1 + τt`t)

1/2 − Pt−1

)

/(2τt). Plugging this fact
into the right-hand side of Eq. (15) gives thatP 2

t cannot exceedP 2
t−1 + τt`t. Using the

inductive assumptionP 2
t−1 ≤ Lt−1 we get thatP 2

t ≤ Lt−1 + τt`t = Lt and the induc-
tive argument is proven. In particular, we have shown thatPT ≤

√
LT . Combining this

inequality with Eq. (14) we get that

(

√

LT

)2

− ‖g?‖
√

LT − ‖g?‖2 − ‖w?‖2 − (1/2)

T
∑

t=1

(`?
t)

2 ≤ 0 .

The above equation is a quadratic inequality in
√

LT from which it follows that
√

Lt can
be at most as large as the positive root of this equation, namely,

√

LT ≤ 1

2

(

‖g?‖ +
(

5 ‖g?‖2 + 4 ‖w?‖2 + 2

T
∑

t=1

(`?
t)

2
)1/2

)

.

Using the the fact that
√

a2 + b2 ≤ (a + b) (a, b ≥ 0) we get that,

√

LT ≤ 1 +
√

5

2
‖g?‖ + ‖w?‖ +

(1

2

T
∑

t=1

(`?
t)

2

)

1/2 . (16)

If `t ≤ 1/2 thenτt`t = 0 and otherwiseτt`t ≥ `2t /4. Therefore, the sum of̀2t over the
rounds for which̀ t > 1/2 is less than4Lt, which yields the bound of the theorem.

Note that if there exists a fixed hypothesis with‖g?‖ < ∞ which attains a margin of1 on
the entire input sequence, then the bound of Thm. 2 reduces to a constant. Our next theorem
states that the algorithm indeed produces bounded-depth PSTs. Its proof is omitted due to
the lack of space.

Theorem 3. Under the conditions of Thm. 2, letT1, . . . , TT be the sequence of PSTs gen-
erated by the algorithm in Fig. 2. Then, for all1 ≤ t ≤ T ,

depth(Tt) ≤ 9 + 2 log2

(

2 ‖g?‖ + ‖w?‖ +
(1

2

T
∑

t=1

(`?
t)

2

)

1/2 + 1
)

.

The bound on tree depth given in Thm. 3 becomes particularly interesting when there exists
some fixed hypothesish? for which

∑

t(`
?
t)

2 is finite and independent of the total length of
the output sequence, denoted byT . In this case, Thm. 3 guarantees that the depth of the PST
generated by the self-bounded algorithm is smaller than a constant which does not depend
on T . We also would like to emphasize that our algorithm is competitive even with a PST
which is deeper than the PST constructed by the algorithm. This can be accomplished by
allowing the algorithm’s predictions to attain lower confidence than the predictions made
by the fixed PST with which it is competing.

Acknowledgments This work was supported by the Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778 and by the Israeli
Science Foundation grant number 522-04.

References

[1] G. Bejerano and A. Apostolico. Optimal amnesic probabilistic automata, or, how
to learn and classify proteins in linear time and space.Journal of Computational
Biology, 7(3/4):381–393, 2000.

[2] P. Buhlmann and A.J. Wyner. Variable length markov chains.The Annals of Statistics,
27(2):480–513, 1999.

[3] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. InAdvances in Neural Information Processing Systems 16, 2003.

[4] N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

[5] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. InPro-
ceedings of the Twenty-First International Conference on Machine Learning, 2004.

[6] E. Eskin. Sparse Sequence Modeling with Applications to Computational Biology
and Intrusion Detection. PhD thesis, Columbia University, 2002.

[7] D.P. Helmbold and R.E. Schapire. Predicting nearly as well as the best pruning of a
decision tree.Machine Learning, 27(1):51–68, April 1997.

[8] M. Kearns and Y. Mansour. A fast, bottom-up decision tree pruning algorithm with
near-optimal generalization. InProceedings of the Fourteenth International Confer-
ence on Machine Learning, 1996.

[9] P. Auer, N. Cesa-Bianchi and C. Gentile. Adaptive and self-confident on-line learning
algorithms.Journal of Computer and System Sciences, 64(1):48–75, 2002.

[10] F.C. Pereira and Y. Singer. An efficient extension to mixture techniques for prediction
and decision trees.Machine Learning, 36(3):183–199, 1999.

[11] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: learning probabilistic
automata with variable memory length.Machine Learning, 25(2):117–150, 1996.

[12] V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[13] F.M.J. Willems, Y.M. Shtarkov, and T.J. Tjalkens. The context tree weighting method:

basic properties.IEEE Transactions on Information Theory, 41(3):653–664, 1995.

