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Abstract

Novelty detection, a fundamental task in machine learning, has drawn a lot of recent
attention due to its wide-ranging applications and the rise of neural approaches. In
this work, we present a general framework for neural novelty detection that centers
around a multivariate extension of the univariate quantile function. Our framework
unifies and extends many classical and recent novelty detection algorithms, and
opens the way to exploit recent advances in flow-based neural density estimation.
We adapt the multiple gradient descent algorithm to obtain the first efficient end-
to-end implementation of our framework that is free of tuning hyperparameters.
Extensive experiments over a number of real datasets confirm the efficacy of our
proposed method against state-of-the-art alternatives.

1 Introduction

Novelty detection refers to the fundamental task in machine learning that detects “novel” or “unusual”
samples in a data stream. It has wide-ranging applications such as network intrusion detection [14],
medical signal processing [17], jet design [19], video surveillance [42, 43], image scene analysis
[25, 47], document classification [29, 30], reinforcement learning [39], etc.; see the review articles
[7, 31, 32, 41] for more insightful applications. Over the last two decades or so, many novelty
detection algorithms have been proposed and studied in the machine learning field, of which the
statistical approach that aims to identify low-density regions of the underlying data distribution has
been most popular [e.g. 4, 49, 51, 53]. More recently, new novelty detection algorithms based on
deep neural networks [e.g. 1, 9, 11, 18, 26, 40, 44, 46, 48, 56, 58, 59] have drawn a lot of attention as
they significantly improve their non-neural counterparts, especially in domains (such as image and
video) where complex high-dimensional structures abound.

This work offers a closer look of these recent neural novelty detection algorithms, by making a connec-
tion to recent flow-based generative modelling techniques [22]. In §2 we show that the triangular map
studied in [22] for neural density estimation serves as a natural extension of the classical univariate
quantile function to the multivariate setting. Since density estimation is extremely challenging in
high dimensions, recent neural novelty detection algorithms all extract a lower dimensional latent
representation, whose probabilistic properties can then by captured by our multivariate triangular
quantile map. Based on this observation we propose a general framework for neural novelty detection
that includes as special cases many classical approaches such as one-class SVM [49] and support
vector data description [53], as well as many recent neural approaches [e.g. 1, 40, 46, 58, 59]. This
unified view of neural novelty detection enables us to better understand the similarities and subtle dif-
ferences of the many existing approaches, and provides some guidance on designing next-generation
novelty detection algorithms.

More importantly, our general framework makes it possible to effortlessly plug-in recent flow-based
neural density estimators, which have been shown to be surprisingly effective even in moderately high
dimensions. Furthermore, centering our framework around the (multivariate) triangular quantile map
(TQM) also enables us to unify the two scoring strategies in the literature [34]: we can either threshold
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the density function [4, 51] or the (univariate) quantile function [49, 53]. Using the multivariate
triangular quantile map, for the first time we can simultaneously perform both, without incurring any
additional cost. In §3, motivated by the sub-optimality of pre-training we cast our novelty detection
framework as multi-objective optimization [35] and apply the multiple gradient descent algorithm
[12, 15, 36] for the first time. We present an efficient implementation that learns the TQM consistently,
end-to-end and free of tuning hyperparameters. In §4 we perform extensive experiments on a variety
of datasets and verify the effectiveness of our framework against state-of-the-art alternatives.

We summarize our main contributions as follows:

• We extend the univariate quantile function to the multivariate setting through increasing triangular
maps. This multivariate triangular quantile map may be of independent interest for many other
problems involving multivariate probabilistic modelling.

• We present a new framework for neural novelty detection, which unifies and extends many existing
approaches including the celebrated one-class SVM and many recent neural ones.

• For the first time we apply the multiple gradient descent algorithm to novelty detection and obtain
an efficient end-to-end implementation of our framework that is free of any tuning hyperparameters.

• We perform extensive experiments to compare to existing novelty detection baselines and to
confirm the efficacy of our proposed framework.

Our code is available at https://github.com/GinGinWang/MTQ.

2 A General Framework for Novelty Detection

In this section we present a general framework for novelty detection. Our framework builds on recent
progresses in generative modelling and unifies and extends many existing works.

We follow the standard setup for novelty detection [e.g. 7]: Given n i.i.d. samples *X1, . . . ,Xn+
from an unknown distribution P over Rd, we want to decide if a new (unseen) sample X̃ is “novel,”
i.e. if it is unlikely to come from the same distribution P . Due to lack of supervision, the notion of
“novelty” is not well-defined. Practically, a popular surrogate is to identify the low-density regions
of the distribution P [4, 49, 51], as samples from these areas are probabilistically unlikely. For
simplicity we assume the underlying distribution P has a density p w.r.t. the Lebesgue measure.

We exploit the following multivariate generalization of the quantile function. Recall that the cumula-
tive distribution function (CDF) F and the quantile function Q of a univariate random variable X is
defined as:

F (x) = Pr(X ≤ x), Q(u) = F−1(u) := inf{x : F (x) ≥ u}.
While the CDF can be easily generalized to the multivariate setting, it is not so obvious for the
quantile function, as its definition intrinsically relies on the total ordering on the real line. However,
following [e.g. 13, 16] we observe that if U follows the uniform distribution over the interval [0, 1],
then Q(U) follows the distribution F . In other words, the quantile function can be defined as a
mapping that pushes the uniform distribution over [0, 1] into the distribution F of interest. This
alternative interpretation allows us to extend the quantile function to the multivariate setting. We
recall that a mapping T = (T1, . . . , Td) : Rd → Rd is called triangular if for all j = 1, . . . , d, the
j-th component Tj depends only on the first j coordinates of the input, and it is called increasing if
for all j, Tj is increasing w.r.t. the j-th coordinate when all other coordinates are fixed. We call T
triangular since its derivative is always a triangular matrix (and vice versa).

Definition 1 (Triangular Quantile Map (TQM)) Let X be a random vector in Rd, and let U be
uniform over the unit hypercube [0, 1]d. We call an increasing triangular map Q = QX : [0, 1]d →
Rd the triangular quantile map of X if Q(U) ∼ X, where ∼ means equality in distribution.

Note that the TQM Q is vector-valued, unlike the CDF which is always real-valued. The existence
and uniqueness of Q follows from results in [5]. Our definition immediately leads to the following
quantile change-of-variable formula (cf. the usual change-of-variable formula for densities):

Proposition 1 Let T : Rd → Rd be an increasing triangular map. If Y = T(X), then

QY = T ◦QX. (1)
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Practically, eq. (1) allows us to easily stack elementary parameterizations of increasing triangular
maps together and still obtain a valid TQM.

To our best knowledge, a similar definition, through conditional univariate quantiles, appeared in
a number of works [2, 10, 37, 45], albeit mostly as a theoretical tool. Our definition makes the
important triangular structure explicit and amenable to parameterization through deep networks.
Needless to say, when d = 1, the triangular property is vacuous and our definition reduces to the
classical quantile function. For a more comprehensive introduction to triangular maps and its recent
rise in machine learning, see [22, 33, 50].

Remark 1 A different definition of the multivariate quantile map, based on the theory of optimal
transport [54], is discussed in a number of recent works [e.g. 8, 13, 16]: Q is instead constrained
to be maximally cyclically monotone, i.e. it is the subdifferential of some convex function. On one
hand, this definition is invariant to permutations of the input coordinates while ours is not. On the
other hand, our definition is composition friendly (see Proposition 1) hence can easily exploit recent
progresses in deep generative models, as we will see shortly. The two definitions coincide with each
other only when reduced to the univariate case.

We note that the recent work of Inouye and Ravikumar [21] proposed yet another similar definition
where Q (termed density destructor there) is only required to be invertible. However, this definition
does not lead to a unique quantile map and it is less computationally convenient.

We are now ready to present our general framework for novelty detection. Let f : Rd → Rm be a
feature map and X a random sample from the unknown density p. We propose to learn the density1

f#p of the latent random vector Z = f(X) using the approach illustrated in [22]. In details, we learn
the feature map f and the TQM Q simultaneously by minimizing the following objective:

min
f ,Q

γKL(f#p‖Q#q) + λ`(f) + ζg(Q), (2)

where g embodies some potential constraints on the increasing triangular map Q, ` is some loss asso-
ciated with learning the feature map f , q is a fixed reference density (in our case the uniform density
over the hypercube [0, 1]m), ζ, λ, γ ≥ 0 are regularization constants, and we use the KL-divergence to
measure the discrepancy between two densities. Exploiting Proposition 1 we parameterize the TQM
as the composition Q = T ◦Φ−1, where Φ = (Φ, . . . ,Φ) with Φ the CDF of standard univaraite
Gaussian and T : Rd → Rd an increasing triangular map. Note that unlike Q whose support is
constrained to the unit hypercube, there is no constraint on the support of T, hence it is easier to
handle the latter computationally.

Once the feature map f and TQM Q are estimated (see next section), we can detect novel test samples
by either thresholding the density function of the latent variable Z or thresholding its TQM. In details,
the density of Z = f(X) = Q(U) = T(Φ−1(U)), using the change-of-variable formula, is

pZ(z) = 1/|Q′(Q−1(z))| = 1
|T′(T−1(z))| ·

m∏
j=1

ϕ([T−1(z)]j), where ϕ = Φ′.

Thus, we declare a test sample X̃ to be “novel” if

log |T′(T−1(f(X̃)))|+ 1
2‖T

−1(f(X̃))‖22 ≥ τ, (3)

where τ is some chosen threshold. Crucially, since T is increasing triangular, T−1 and the triangular
determinant |T′| can both be computed very efficiently [22]. The (slight) downside of this density
approach is that the scale of an appropriate threshold τ is usually difficult to guess.

Alternatively, we can declare a test sample X̃ to be “novel” by directly thresholding the TQM Q.
Indeed, let N ⊆ [0, 1]m be a subset whose (uniform) measure is 1− α for some α ∈ (0, 1), then we
say X̃ is “novel” iff

Q−1(f(X̃)) 6∈ N. (4)
For instance, we can choose N to be the cube centered at (1/2, . . . , 1/2) and with side length
(1− α)1/m, in which case

Q−1(f(X̃)) 6∈ N ⇐⇒ ‖Q−1(f(X̃))− 1
2‖∞ ≥ (1− α)1/m/2.

1The notation T#p stands for the push-forward density, i.e., the density of T(X) when X ∼ p.
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The upside of this quantile approach is that we can control Type-I error (i.e. false positive) precisely,
i.e. if X̃ is indeed sampled from p, then we will declare it to be novel with probability at most α.

Before proceeding to the implementation details of (2), let us mention the advantages of our general
framework (2) for novelty detection: (a) It allows us to perform feature extraction on the original
sample X in an end-to-end fashion. As is well-known, density estimation hence also novelty detection
becomes extremely challenging when the dimension d is high. Our framework alleviates this curse-
of-dimensionality by setting m� d and employing f to perform dimensionality reduction. (b) Our
end-to-end framework enables us to adopt the recent flow-based density estimation algorithms, which
have been shown to be universally consistent [20, 22] and extremely effective in practice. (c) By
estimating the TQM Q once, we can employ the two scoring rules, i.e. the density scoring rule (3)
and the quantile scoring rule (4), simultaneously, without incurring any extra overhead. This allows us
to perform a fair and comprehensive experimental comparison of the two complementary approaches.
(d) Last but not least, our framework recovers, unifies, and extends many existing approaches in the
literature. Let us conclude this section with some examples.

Example 1 (One-class SVM [49]) As shown in [52], the one-class SVM minimizes precisely the
conditional value-at-risk, which is the average of the tail of a distribution:

min
f

CVaRα(f(X)) + λ‖f‖2Hκ , where CVaRα(Z) := E(Z|Z ≥ QZ(α)),

QZ(α) is the α-th quantile of the real random variable Z, andHκ is the reproducing kernel Hilbert
space (RKHS) induced by some kernel κ. This approach employs the quantile scoring rule (4).

To cast one-class SVM into our framework (2), let us set m = 1 hence the TQM reduces to the
classical one. Let `(f) = ‖f‖2Hκ and g(Q) = CVaRα(Q#q). Now with ζ = 1 and γ =∞ in (2) we
recover the celebrated one-class SVM.

If instead of choosing f from an RKHS, we represent f using a deep network, then we recover the
recent approach in [6].

Example 2 (Support Vector Data Description (SVDD) [53]) Similar to one-class SVM, it is easy
to show that SVDD also minimizes the conditional value-at-risk:

min
c∈Hκ

CVaRα(‖ϕ(X)− c‖2Hκ),

where ϕ : Rd → Hκ is the canonical feature map of the RKHS. This approach also employs the
quantile scoring rule (4). It is well-known known that SVDD and one-class SVM are equivalent for
radial kernels [e.g. 49].

Again in this case m = 1. Let f(X) = ‖ϕ(X) − c‖2Hκ , ` ≡ 0 and g(Q) = CVaRα(Q#q). As γ
approaches∞ in (2), we recover the SVDD formulation.

If instead of choosing ϕ as the canonical feature map of an RKHS, we represent ϕ using a deep
network, then we recover the recent approach in [44].

Example 3 (Latent Space Autoregression (LSA) [1]) The recent work [1], following a sequence
of previous attempts [40, 46, 58, 59], proposed to learn the feature map f using an auto-encoder
structure, and to learn the density of the latent variable Z = f(X) using an autoregressive model,
which, as argued in [22], exactly corresponds to a triangular map. In other words, if we set f as the
parameters of an auto-encoder, ` to be its reconstruction loss, and g ≡ 0, then our framework (2)
reduces to LSA. However, our general framework opens the way to exploit more advanced flow-based
density estimation algorithms, as well as the quantile scoring rule (4).

3 Estimating TQM Using Deep Networks

In this section we show how to estimate the TQM Q in (2) based on samples *X1, . . . ,Xn+
i.i.d.∼ p.

In particular, any flow-based neural density estimator can be plugged into our framework.

Our framework (2) has three components which we implement as follows:

• A feature extractor f for performing dimensionality reduction. Following previous works [1, 40,
46, 58, 59] we implement f through a deep autoencoder that consists of one encoder Z = E(X;θE)
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and one decoder X̂ = D(Z;θD) . We use the Euclidean reconstruction loss:

`(f) = `(θE ,θD) =
∑n
i=1 ‖Xi − X̂i‖2.

As argued in [3], the reconstruction error, aside from low likelihood, is an important indicator for
“novelty.” Indeed, since the autoencoder is trained on nominal data, a test sample will incur a large
reconstruction error only when it is novel, as such samples have never been encountered before.

• A flow-based neural density estimator for Q. Here we adopt the sum-of-squares (SOS) flow
proposed in [22], although other neural density estimators would apply equally well. The SOS flow
consists of two parts: an increasing (univariate) polynomial P2r+1(u; a) with degree 2r + 1 for
modelling conditional densities and a conditioner network Cj(u1, . . . , uj−1;θQ) for generating
the coefficients a of the polynomial:

P2r+1(u; a) = c+
∫ u
0

∑k
s=1

(∑r
l=0 al,st

l
)2

dt,

where c ∈ R is an arbitrary constant, r ∈ N is the degree of polynomial, and k can be chosen as
small as 2. In other words, the TQM Q learned using SOS flow has the following form:

Q = T ◦Φ−1, where ∀j, Tj(u1, . . . , uj) = P2r+1

(
uj ;Cj(u1, . . . , uj−1;θQ)

)
. (5)

Any regularization term on the conditioner network weights θQ can be put into the function g(Q)
in our framework (2).

• Lastly, the KL-divergence term in (2) can be approximated empirically using the given sample
*X1, . . . ,Xn+. Upon dropping irrelevant constants we reduce the KL term in (2) to:

min
θQ

n∑
i=1

[
log |Q′(Q−1(f(Xi)))| − log q(Q−1(f(Xi)))

]
,

where each component of Q is given in (5). Crucially, since Q is increasing triangular, evaluating
the inverse Q−1 and the Jacobian |Q′| can both be done in linear time [22].

Since q is the uniform density over the hypercube, upon simplification the final training objective we
use in our experiments is as follows. Let Zi = E(Xi;θE), we aim to solve:

min
θ

n∑
i=1

(1− λ)
[

log |T′(T−1(Zi))|+ ‖T−1(Zi)‖22/2︸ ︷︷ ︸
negative log-likelihood h(Xi;θ)

]
+ λ ‖Xi −D(Zi;θD)‖2︸ ︷︷ ︸

reconstruction loss `(Xi;θ)

, (6)

and recall that Q = T ◦Φ−1 is parameterized through the conditioner network weights θQ in (5).
We did not find it necessary to further regularize Q hence set g ≡ 0 in (2) and w.l.o.g. γ = 1− λ.

The first KL term in (2), as is well-known, reduces to the negative log-likelihood of the latent
random vectors Zi in (6), and the second term is the standard reconstruction loss. The two terms
share the encoder weights θE and the trade-off is balanced through the hyperparameter λ. This
design choice conforms to the psychology findings in [3]. In practice, we found that the variance
of the log-likelihood is much larger than that of the reconstruction loss, and as a consequence we
observed substantial difficulty in directly minimizing the weighted objective in (6). A popular pre-
training heuristic is to train the whole model in two stages: we first minimize the reconstruction
loss `(θE ,θD) and then, with the learned hidden vector Z, we estimate the TQM Q by maximum
likelihood. However, as shown in [59], the latent representation learned in the first stage does not
necessarily help the task in the second stage.

Instead, we cast the two competing objectives in (6) as multi-objective optimization, which we solve
using the multiple gradient descent algorithm (MGDA) [12, 15, 36]. Our motivation comes from the
following observation: the two-stage procedure amounts to first setting λ = 1 and running gradient
descent (GD) for a number of iterations, then switching to λ = 0 (or λ = 0.5 say) and running GD
for the remaining iterations. Naturally, instead of any pre-determined schedule for the hyperparameter
λ (such as switching from 1 to 0 or 0.5), why not let GD decide what λ to use in each iteration? This
is precisely the main idea behind MGDA, where at iteration t we solve

λt = argmin
0≤λ≤1

∥∥∥∥∥∑
i∈I

(1− λ)∇h(Xi;θt) + λ∇`(Xi;θt)

∥∥∥∥∥
2

= min
{

1,max
{

0, 〈∇hI−∇`I ,∇hI〉‖∇hI−∇`I‖2

}}
,

5



where I ⊆ {1, . . . , n} is a minibatch of samples, and obviously ∇hI =
∑
i∈I ∇h(Xi;θt) and

similarly for∇`I . With λt calculated we can continue the gradient update:

θt+1 = θt − η[(1− λt)∇hI + λt∇`I ],

where η ≥ 0 is the step size. As shown in [12], this algorithm converges to a Pareto-optimal solution
under fairly general conditions. Pleasantly, MGDA eliminates the need of tuning the hyperparameter
λ as it is determined automatically on the fly. To our best knowledge, our work is the first to
demonstrate the effectiveness of MGDA on novelty detection tasks.

We end our discussion by pointing out that the algorithm we develop here can easily be adapted to
other design choices that fit into our general framework (2). For instance, if we use a variational
autoencoder [23] or a denoising autoencoder [55], then we need only replace the square reconstruction
loss in (6) accordingly.

4 Empirical Results

In this section, we evaluate the performance of our proposed method for novelty detection and
compare it with the traditional and state-of-the-art alternatives. For evaluation, we use precision,
recall, F1 score, and the Area Under Receiver Operating Characteristic (AUROC) curve as our
performance metrics, which are commonly used in previous works.

4.1 Datasets

In our experiments, we use two public image datasets: MNIST and Fashion-MNIST, as well as two
non-image datasets: KDDCUP and Thyroid. A detailed description of these datasets, the applied
network architectures, and the training hyperparameters can be found in Appendix A. For MNIST
and Fashion-MNIST, each of the ten classes is deemed as the nominal class while the rest of the nine
classes are deemed as the novel class. We use the standard training and test splits. For every class,
we hold out 10% of the training set as the validation set, which is used to tune hyperparameters and
to monitor the training process.

4.2 Competitor Algorithms

We compare our method with the following alternative algorithms:

• OC-SVM [49]. OC-SVM is a traditional kernel-based quantile approach which has been widely
used in practice for novelty detection. We use the RBF kernel in our experiments. We consider two
OC-SVM-based methods for comparison. 1) RAW-OC-SVM: the input is directly fed to OC-SVM;
2) CAE-OC-SVM: a convolutional autoencoder is first applied to the input data for dimensionality
reduction, and then the low-dimensional latent representation is fed to OC-SVM.

• Geometric transformation (GT) [18]. A self-labeled multi-class dataset is first created by ap-
plying a set of geometric transformations to the original nominal examples. Then, a multi-class
classifier is trained to discriminate the geometric transformations of each nominal example. The
scoring function in GT is the conditional probability of the softmax responses of the classifier given
the geometric transformations.

• Variational autoencoder (VAE) [23]. The evidence lower bound is used as the scoring function.
• Denoising autoencoder (DAE) [55]. The reconstruction error is used as the scoring function.
• Deep structured energy-based models (DSEBM) [58]. DSEBM employs a deterministic deep

neural network to output the energy function (i.e., negative log-likelihood), which is used to form
the density of nominal data. The network is trained by score matching in a way similar to training
DAE. Two scoring functions based on reconstruction error and energy score are considered.

• Deep autoencoding Gaussian mixture model (DAGMM) [59]. DAGMM consists of a compression
network implemented using a deep autoencoder and a Gaussian mixture estimation network that
outputs the joint density of the latent representations and some reconstruction features from the
autoencoder. The energy function is used as the scoring function.

• Generative probabilistic novelty detection (GPND) [40]. GPND, based on adversarial autoen-
coders, employs an extra adversarial loss to impose priors on the output distribution. The density is
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Table 1: AUROC of Variants of Our Method on MNIST
Scoring function λ = 0.99 0.9 0.5 0.1 Optimized

NLL 0.9729 0.9692 0.9537 0.9389 0.9728
TQM1 0.9622 0.9616 0.9430 0.9319 0.9666
TQM2 0.9666 0.9645 0.9465 0.9347 0.9699
TQM∞ 0.9499 0.9527 0.9371 0.9128 0.9531

Table 2: Average Precision, Recall, and F1 Score on Non-image Datasets
Thyroid KDDCUP

Method Precision Recall F1 Precision Recall F1

RAW-OC-SVM * 0.3639 0.4239 0.3887 0.7457 0.8523 0.7954
DSEBM * 0.0404 0.0403 0.0403 0.7369 0.7477 0.7423
DAGMM * 0.4766 0.4834 0.4782 0.9297 0.9442 0.9369
Ours-REC – – – 0.6305 0.6287 0.6296
Ours-NLL 0.7312 0.7312 0.7312 0.9622 0.9622 0.9622
Ours-TQM1 0.5269 0.5269 0.5269 0.9621 0.9621 0.9621
Ours-TQM2 0.5806 0.5806 0.5806 0.9622 0.9622 0.9622
Ours-TQM∞ 0.7527 0.7527 0.7527 0.9622 0.9622 0.9622

used as the scoring function. By linearizing the manifold that nominal data resides on, its density
is factorized into two product terms, which are then approximately computed using nominal data.

• Latent space autoregression (LSA) [1]. A parametric autoregressive model is used to estimate
the density of the latent representation generated by a deep autoencoder, where the conditional
probability densities are modeled as multinomials over quantized latent representations. The sum
of the normalized reconstruction error and log-likelihood is used as the scoring function.

4.3 Variants of Our Method

In this subsection, we first compare some variants of our proposed method. With regard to the network
configuration, except on Thyroid whose dimension is too small to require any form of dimentionality
reduction, all other experiments contain both an autoencoder and an estimation network.

We consider the following five scoring functions that we threshold at some level τ . In particular,
given a test example X̃, we denote its reconstruction by X̂ and its latent representation by Z̃ = f(X̃).

• Reconstruction error (REC): ‖X̃− X̂‖2;

• Negative log-likelihood (NLL): log |T′(T−1(Z̃))|+ ‖T−1(Z̃)‖22/2;

• 1-norm of quantile (TQM1): ‖Φ(T−1(Z̃))− 1
2‖1,

• 2-norm of quantile (TQM2): ‖Φ(T−1(Z̃))− 1
2‖2;

• Infinity norm of quantile (TQM∞): ‖Φ(T−1(Z̃))− 1
2‖∞.

In Table 1, we compare two approaches on MNIST for selecting the hyperparameter λ in the training
phase: 1) chosen from a pre-set family using the validation set; and 2) automatically optimized using
MGDA [12, 15, 36]. We report the average AUROC over 10 classes. It is clear that for all scoring
functions, the optimized λ generally leads to the highest AUROC. This is also observed on other
datasets such as Fashion-MNIST. Within the proposed variants, NLL results in the highest AUROC
among all scoring functions, followed by TQM2. In Table 2, on the two non-image datasets we
evaluate the average precision, recall, and F1 score. The superscript ∗ on the baselines indicates that
the results are directly quoted from the respective references. The threshold is chosen by assuming
the prior knowledge of the ratio between the novel and nominal examples in the test set. Under this
assumption, the number of false positives is equal to that of false negatives, thus the value of the
three metrics coincides. On Thyroid, TQM∞ is slightly better than the density-based method. On
KDDCUP, the density and quantile-based approaches have the same performance, while REC results
in the worst performance. On both datasets, our proposed methods are superior to the benchmarks.

7



Table 3: AUROC on MNIST and Fashion-MNIST
MNIST

Class OC-SVM
VAE DAE LSA GT DAGMM GPND DSEBM Ours-NLL Ours-TQM2RAW CAE

0 0.995 0.990 0.985 0.982 0.998 0.982 0.500 0.999 0.320 0.995 0.993
1 0.999 0.999 0.997 0.998 0.999 0.893 0.766 0.999 0.987 0.998 0.997
2 0.926 0.919 0.943 0.936 0.923 0.993 0.326 0.980 0.482 0.953 0.948
3 0.936 0.939 0.916 0.929 0.974 0.987 0.319 0.968 0.753 0.963 0.957
4 0.967 0.946 0.945 0.940 0.955 0.993 0.368 0.980 0.696 0.966 0.963
5 0.955 0.936 0.929 0.928 0.966 0.994 0.490 0.987 0.727 0.962 0.960
6 0.987 0.979 0.977 0.982 0.992 0.999 0.515 0.998 0.954 0.992 0.990
7 0.966 0.951 0.975 0.971 0.969 0.966 0.500 0.988 0.911 0.969 0.966
8 0.903 0.896 0.864 0.857 0.935 0.974 0.467 0.929 0.536 0.955 0.951
9 0.962 0.960 0.967 0.974 0.969 0.993 0.813 0.993 0.905 0.977 0.976

avg 0.960 0.952 0.950 0.950 0.968 0.977 0.508 0.982 0.727 0.973 0.970

Fashion-MNIST

Class OC-SVM
VAE DAE LSA GT DAGMM GPND DSEBM Ours-NLL Ours-TQM2RAW CAE

0 0.919 0.908 0.874 0.867 0.916 0.903 0.303 0.917 0.891 0.922 0.917
1 0.990 0.987 0.977 0.978 0.983 0.993 0.311 0.983 0.560 0.958 0.950
2 0.894 0.884 0.816 0.808 0.878 0.927 0.475 0.878 0.861 0.899 0.899
3 0.942 0.911 0.912 0.914 0.923 0.906 0.481 0.945 0.903 0.930 0.925
4 0.907 0.913 0.872 0.865 0.897 0.907 0.499 0.906 0.884 0.922 0.921
5 0.918 0.865 0.916 0.921 0.907 0.954 0.413 0.924 0.859 0.894 0.884
6 0.834 0.820 0.738 0.738 0.841 0.832 0.420 0.785 0.782 0.844 0.838
7 0.988 0.984 0.976 0.977 0.977 0.981 0.374 0.984 0.981 0.980 0.972
8 0.903 0.877 0.795 0.782 0.910 0.976 0.518 0.916 0.865 0.945 0.943
9 0.982 0.955 0.965 0.963 0.984 0.994 0.378 0.876 0.967 0.983 0.983

avg 0.928 0.910 0.884 0.881 0.922 0.937 0.472 0.911 0.855 0.928 0.923

4.4 Comparison with Baseline Methods

In this section, we compare our method with the baseline approaches. Note that except RAW-OC-SVM
and GT, all other methods, including our own, are based on autoencoders.

In Table 3, we show the comparison of AUROC on the image datasets. Among the proposed quantile
scoring functions we only list TQM2, which outputs the highest value of AUROC. We observe that
on both datasets our proposed methods are superior to most of the benchmarks, with the density
scoring function being slightly better than the quantile one. On MNIST, GPND and GT have better
performance; and on Fashion-MNIST, GT outputs the highest value of AUROC followed by Ours-
NLL and RAW-OC-SVM. However, since GT explicitly extracts features by using a set of geometric
transformations, it inevitably suffers a high computational and space complexity. In Appendix B, we
further compare and discuss the proposed density and quantile-based approaches in detail.

4.5 Comparison with Two-Stage Training

In our proposed algorithm the autoencoder and the estimation network are trained jointly by employing
MGDA. For comparison, we also consider the following two-stage training strategies:

• We first train the autoencoder, then fix the autoencoder and train the estimation network alone
(denoted as Fix-).
• we first pretrain the autoencoder, then jointly train the autoencoder and the estimation network

with the weight λ fixed to 0.5 (denoted as Pretrain-).

The comparison regarding AUROC on MNIST is shown in Table 4. We found that the proposed
joint training method leads to the best performance for both the density-based and the quantile-based
scoring functions. This is consistent with the findings in many existing works [e.g. 1, 6, 44, 58]. For
the fixed two-stage method, our understanding is that the latent representation learned in the first
stage may not be the most beneficial for the training of the estimation network in the second stage,
which in turn degrades the overall performance. For the pretrained two-stage method, although in
the second stage the two parts are trained jointly the autoencoder is initialized with the parameters
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Table 4: Comparison between joint and two-stage training: AUROC on MNIST
Class Fix-NLL Pretrain-NLL Ours-NLL Fix-TQM2 Pretrain-TQM2 Ours-TQM2

0 0.9939 0.9954 0.9951 0.9904 0.9939 0.9925
1 0.9971 0.9988 0.9977 0.9972 0.9985 0.9969
2 0.9403 0.9677 0.9526 0.9188 0.9568 0.9479
3 0.9568 0.9496 0.9627 0.9481 0.9414 0.9567
4 0.9703 0.9445 0.9657 0.9700 0.9388 0.9625
5 0.9612 0.9564 0.9618 0.9525 0.9486 0.9601
6 0.9878 0.9907 0.9915 0.9841 0.9881 0.9895
7 0.9629 0.9676 0.9686 0.9587 0.9656 0.9660
8 0.9549 0.9587 0.9551 0.9397 0.9527 0.9512
9 0.9736 0.9733 0.9768 0.9742 0.9641 0.9756

avg 0.9699 0.9703 0.9728 0.9634 0.9649 0.9699

Figure 1: Distributional comparison on training and test scoring statistics on MNIST (nominal: digit
1). From left to right: 1) NLL; 2) TQM1; 3) TQM2; and 4) TQM∞.

learned in the first stage, which might prevent it from being updated to a more suitable local optimum.
The comparison on Fashion-MNIST dataset is similar and is shown in Appendix C.

4.6 Visualization

In Figure 1, we show the violin plots of the scoring statistics NLL, TQM1, TQM2, and TQM∞ on
MNIST test set (with digit 1 serving the nominal class). We use the network parameters produced at
every 20 epochs in training to generate each curve. We can see that, in the beginning the nominal and
novel data have a large region of overlap and after more training epochs they are gradually separated.
After about 20 epochs of training they can be clearly distinguished under NLL, TQM1, and TQM2,
which indicates the effectiveness of these scoring functions. For TQM∞, the distribution of novel data
is concentrated within a narrow region, which is near the boundary of that of nominal data. More
results on visualization can be found in Appendix D.

5 Conclusion

The univariate quantile function was extended to the multivariate setting through increasing triangular
maps, which in turn motivates us to develop a general framework for neural novelty detection. Our
framework unifies and extends many existing algorithms in novelty detection. We adapted the
multiple gradient algorithm to obtain an efficient, end-to-end implementation of our framework that
is free of any tuning hyperparameters. We performed extensive experiments on a number of datasets
to confirm the competitiveness of our method against state-of-the-art alternatives. In the future we
will study the consistency of our estimation algorithm for the multivariate triangular quantile map
and we plan to apply it to other multivariate probabilistic modelling tasks.
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