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Abstract

Recent variational inference methods use stochastic gradient estimators whose
variance is not well understood. Theoretical guarantees for these estimators are
important to understand when these methods will or will not work. This paper
gives bounds for the common “reparameterization” estimators when the target is
smooth and the variational family is a location-scale distribution. These bounds
are unimprovable and thus provide the best possible guarantees under the stated
assumptions.

1 Introduction

Take a distribution p(z,x) representing relationships between data x and latent variables z. After
observing x, one might wish to approximate the marginal probability p(x) or the posterior p(z|x).
Variational inference (VI) is based on the simple observation that for any distribution q(z),

log p(x) = E
z⇠q

log
p(z, x)

q(z)| {z }
ELBO(q)

+KL (q(z)kp(z|x)) . (1)

VI algorithms typically choose an approximating family qw and maximize ELBO(qw) over w.
Since log p(x) is fixed, this simultaneously tightens a lower-bound on log p(x) and minimizes the
divergence from qw(z) to the posterior p(z|x).
Traditional VI algorithms suppose p and qw are simple enough for certain expectations to have closed
forms, leading to deterministic coordinate-ascent type algorithms [6, 1, 20]. Recent work has turned
towards stochastic optimization. There are two motivations for this. First, stochastic data subsampling
can give computational savings [7]. Second, more complex distributions can be addressed if p is
treated as a “black box”, with no expectations available [9, 15, 19]. In both cases, one can still
estimate a stochastic gradient of the ELBO [17] and thus use stochastic gradient optimization. It is
possible to address very complex and large-scale problems using this strategy [10].

These improvements in scale and generality come at a cost: Stochastic optimization is typically less
reliable than deterministic coordinate ascent. Convergence is often a challenge, and methods typically
use heuristics for parameters like step-sizes. Failures do frequently occur in practice [22, 11, 4].

To help understand when black-box VI can be expected to work, this paper investigates the variance
of gradient estimates. This is a major issue in practice, and many ideas have been proposed to attempt
to reduce the variance [8, 5, 12, 2, 18, 13, 14, 16]. Despite all this, few rigorous guarantees on the
variance of gradient estimators seem to be known (Sec. 5.1).
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1.1 Contributions

This paper studies “reparameterization” (RP) or “path” based gradient estimators when qw is in a
multivariate location-scale family. We decompose ELBO(qw) = l(w) + h(w) where h(w) is the
entropy of qw (known in closed-form) and l(w) = Ez⇠qw log p(z,x). The key assumption is that
log p(z,x) is (Lipschitz) smooth as a function of z, meaning that rz log p(z,x) can’t change too
quickly as z changes. Formally f(z) is M -smooth if krf(z)�rf(z0

)k2  Mkz � z0k2.

Bound for smooth target distributions: If g is the RP gradient estimator of rl(w) and log p is
M -smooth, then E kgk2 is bounded by a quadratic function of w (Thm. 3). With a small
relaxation, this is E kgk2  aM2kw � w̄k2 (Eq. (3)) where w̄ are fixed parameters and a
is determined by the location-scale family.

Generalized bound: We extend this result to consider a more general notion of “matrix” smoothness
(Thm. 5) reflecting that the sensitivity of rz log p(z,x) to changes in z may depend on the
direction of change.

Data Subsampling: We again extend this result to consider data subsampling (Thm. 6). In particular,
we observe that non-uniform subsampling gives tighter bounds.

In all cases, we show that the bounds are unimprovable. We experimentally compare these bounds to
empirical variance.

2 Setup

Given some “black box” function f , this paper studies estimating gradients of functions l of the form
l(w) = Ez⇠qw f(z). Now, suppose some base distribution s and mapping Tw are known such that if
u ⇠ s, then Tw(u) ⇠ qw. Then, l can be written as

l(w) = E
u⇠s

f(Tw(u)).

If we define g = rwf(Tw(u)), then g is an unbiased estimate of rl, i.e. E g = rl(w). The same
idea can be used when f is composed as a finite sum as f(z) =

PN
n=1

fn(z). If N is large, even
evaluating f once might be expensive. However, take any positive distribution ⇡ over n 2 {1, · · · , N}
and sample n ⇠ ⇡ independently of u. Then, if we define g = rw⇡(n)�1fn(Tw(u)), this is again an
unbiased estimator with E g = rl(w).

Convergence rates in stochastic optimization depend on the variability of the gradient estimator,
typically either via the expected squared norm (ESN) E kgk2

2
or the trace of the variance trV g. These

are closely related, since E kgk2
2
= trV g + kE gk2

2
.

The goal of this paper is to bound the variability of g for reparameterization / path estimators of g.
This requires making assumptions about (i) the transformation function Tw and base distribution s
(which determine qw) and (ii) the target function f .

Here, we are interested in the case of affine mappings. We use the mapping[17]

Tw(u) = Cu+m,

where w = (m, C) is a single vector of all parameters. This is the most common mapping used
to represent location-scale families. That is, if u ⇠ s then Tw(u) is equal in distribution to a
location-scale family distribution. For example, if s = N (0, I) then Tw(u) is equal in distribution to
N (m, CC>

).

We will refer to the base distribution as standardized if the components of u = (u1, · · · , ud) ⇠ s are
iid with E u1 = E u3

1
= 0 and V u1 = 1. The bounds will depend on the fourth moment  = E[u4

1
],

but are otherwise independent of s.

To apply these estimators to VI, choose f(z) = log(z,x). Then ELBO(w) = l(w) + h(w)

where h is the entropy of qw. Stochastic estimates of the gradient of l can be employed in a
stochastic gradient method to maximize the ELBO. To model the stochastic setting, suppose that
X = (x1, · · · ,xN ) are iid and p(z, X) = p(z)

QN
n=1

p(xn|z). Then, one may choose, e.g. fn(z) =

2



1

N log p(z) + log p(xn|z). The entropy h is related to the (constant) entropy of the base distribution
as h(w) = Entropy(s) + log |C|.
The main bounds of this paper concern estimators for the gradient of l(w) alone, disregarding h(w).
There are two reasons for this. First, in location-scale families, the exact gradient of h(w) is known.
Second, if one uses a stochastic estimator for h(w), this can be “absorbed” into l(w) to some degree.
This is discussed further in Sec. 5.

3 Variance Bounds

3.1 Technical Lemmas

We begin with two technical lemmas which will do most of the work in the main results. Both have
(somewhat laborious) proofs in Sec. 7 (Appendix). The first lemma relates the norm of the parameter

gradient of f(Tw(u)) (with respect to w) to the norm of the gradient of f(z) itself, evaluated at
z = Tw(u).

Lemma 1. For any w and u, krwf(Tw(u))k2
2
= krf(Tw(u))k2

2

⇣
1 + kuk2

2

⌘
.

The proof is tedious but essentially amounts to calculating the derivative with respect to each
component of w (i.e. entries mi and Cij), summing the square of all entries, and simplifying. The
second lemma gives a closed-form for the expectation of a closely related expression that will appear
in the proof of Thm. 3 as a consequence of applying Lem. 1.
Lemma 2. Let u ⇠ s for s standardized with u 2 Rd

and Eu⇠s u4i = . Then for any z̄,

E kTw(u)� z̄k2
2

�
1 + kuk2

2

�
= (d+ 1) km� z̄k2

2
+ (d+ ) kCk2F .

Again, the proof is tedious but based on simple ideas: Substitute the definition of Tw into the left-hand
side and expand all terms. This gives terms between zeroth and fourth order (in u). Calculating the
exact expectation of each and simplifying using the assumption that s is standardized gives the result.

3.2 Basic Variance Bound

Given these two lemmas, we give our major technical result, bounding the variability of a
reparameterization-based gradient estimator. This will be later be extended to consider data subsam-
pling, and a generalized notion of smoothness. Note that we do not require that f be convex.
Theorem 3. Suppose f is M -smooth, z̄ is a stationary point of f , and s is standardized with u 2 Rd

and E u4i = . Let g = rwf (Tw(u)) for u ⇠ s. Then,

E kgk2
2
 M2

⇣
(d+ 1) km� z̄k2

2
+ (d+ ) kCk2F

⌘
. (2)

Moreover, this result is unimprovable without further assumptions.

Proof. We expand the definition of g, and use the above lemmas and the smoothness of f.

E kgk2
2
= E krwf(Tw(u))k2

2
(Definition of g)

= E krf(Tw(u))k2
2
(1 + kuk2

2
) (Lem. 1)

= E krf(Tw(u))�rf(z̄)k2
2
(1 + kuk2

2
) (rf(z̄) = 0)

 EM2 kTw(u)� z̄k2
2
(1 + kuk2

2
) (f is smooth)

= M2

⇣
(d+ 1) km� z̄k2

2
+ (d+ ) kCk2F

⌘
. (Lem. 2)

To see that this is unimprovable without further assumptions, observe that the only inequality is using
the smoothness on f to bound the norm of the difference of gradients at Tw(u) and at z̄. But for
f(z) = M

2
kz � z̄k2

2
this inequality is tight. Thus, for any M and z̄, there is a function f satisfying

the assumptions of the theorem such that Eq. (2) is an equality.
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With a small amount of additional looseness, we can cast Eq. (2) into a more intuitive form. Define
w̄ = (z̄, 0d⇥d), where 0d⇥d is a d⇥ d matrix of zeros. Then, kw � w̄k2

2
= km� z̄k2

2
+ kCk2F , so

we can slightly relax Eq. (2) to the more user-friendly form of

E kgk2
2
 (d+ )M2 kw � w̄k2

2
. (3)

The only additional looseness is bounding d+1  d+. This is justified since when s is standardized,
 = u4i is the kurtosis, which is at least one. Here,  is determined by s and does not depend on the
dimensionality. For example, if s is Gaussian,  = 3. Thus, Eq. (3) will typically not be much looser
than Eq. (2).

Intuitively, w̄ are parameters that concentrate q entirely at a stationary point of f . It is not hard to
show that kw � w̄k2 = Ez⇠qw kz � z̄k2. Thus, Eq. (3) intuitively says that E kgk2 is bounded in
terms of how far far the average point sampled from qw is from z̄. Since f need not be convex, there
might be multiple stationary points. In this case, Thm. 3 holds simultaneously for all of them.

3.3 Generalized Smoothness

Since the above bound is not improvable, tightening it requires stronger assumptions. The tightness
of Thm. 3 is determined by the smoothness condition that the difference of gradients at two points
is bounded as krf(y)�rf(z)k

2
 M ky � zk

2
. For some problems, f may be much smoother

in certain directions than others. In such cases, the smoothness constant M will need to reflect the
worst-case direction. To produce a tighter bound for such situations, we generalize the notion of
smoothness to allow M to be a symmetric matrix.

Definition 4. f is M -matrix-smooth if krf(y)�rf(z)k
2
 kM(y � z)k

2
(for symmetric M ).

We can generalize the result in Thm. 3 to functions with this matrix-smoothness condition. The proof
is very similar. The main difference is that after applying the smoothness condition, the matrix M
needs to be “absorbed” into the parameters w = (m, C) before applying Lem. 2.

Theorem 5. Suppose f is M -matrix smooth, z̄ is a stationary point of f , and s is standardized with

u 2 Rd
and E u4i = . Let g = rwf (Tw(u)) for u ⇠ s. Then,

E kgk2
2
 (d+ 1) kM(m� z̄)k2

2
+ (d+ ) kMCk2F . (4)

Moreover, this result is unimprovable without further assumptions.

Proof. The proof closely mirrors that of Thm. 3. Here, given w = (m, C), we define v =

(Mm,MC), to be w with M “absorbed” into the parameters.

E kgk2
2
= E krwf(Tw(u))k2

2
Definition of g)

= E krf(Tw(u))k2
2
(1 + kuk2

2
) (Lem. 1)

= E krf(Tw(u))�rf(z̄)k2
2
(1 + kuk2

2
) (rf(z̄) = 0)

 E kM (Tw(u)� z̄)k2
2
(1 + kuk2

2
) (f is smooth)

= E kTv(u)�M(z̄ �m)k2
2
(1 + kuk2

2
) (Absorb M into v)

= (d+ 1) kMm�M z̄k2
2
+ (d+ ) kMCk2F . (Lem. 2)

To see that this is unimprovable, observe that the only inequality is the matrix-smoothness condition
on f . But for f(z) =

1

2
(z � z̄)>M(z � z̄), the difference of gradients krf(y) � rf(z)k2 =

kM(y � z)k2 is an equality. Thus, for any M and z̄, there is an f satisfying the assumptions of the
theorem such that the bound in Eq. (4) is an equality.

It’s easy to see that this reduces to Thm. 3 in the case that f is smooth in the standard sense– this
corresponds to the situation where M is some constant times the identity. Alternatively, one can
simply observe that the two results are the same if M is a scalar. Thus, going forward we will use
Eq. (4) to represent the result with either type of smoothness assumption on f.
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3.4 Subsampling

Often, the function f(z) takes the form of a sum over other functions fn(z), typically representing
different data. Write this as

f(z) =
NX

n=1

fn(z).

To estimate the gradient of Eu⇠s f(Tw(u)), one can save time by using “subsampling”: That is, draw
a random n, and then estimate the gradient of Eu⇠s fn(Tw(u)). The following result bounds this
procedure. It essentially just takes a set of estimators, one corresponding to each function fn, bounds
their expected squared norm using the previous theorems, and then combines these.

Theorem 6. Suppose fn is Mn-matrix-smooth, z̄n is a stationary point of fn, and s is standardized

with u 2 Rd
and E u4i = . Let g =

1

⇡(n)rfn(Tw(u)) for u ⇠ s and n ⇠ ⇡ independent. Then,

E kgk2
2


NX

n=1

1

⇡(n)

⇣
(d+ 1) kMn(m� z̄n)k22 + (d+ ) kMnCk2F

⌘
. (5)

Moreover, this result is unimprovable without further assumptions.

Proof. Consider a simple lemma: Suppose a1 · · · aN are independent random vectors and ⇡ is any
distribution over 1 · · ·N. Let b = an/⇡(n) for n ⇠ ⇡, where n is independent of an. It is easy to
show that E b =

PN
n=1

E an and E kbk2
2
=

P
n E kank22 /⇡(n). The result follows from applying

this with an = rwfn (Tw(u)), and then bounding E kank22 using Thm. 5.

Again, in this result the only source of looseness is the use of the smoothness bound for the component
functions fn. Accordingly, the result can be shown to be unimprovable: For any set of stationary
points z̄ and smoothness parameters Mn we can construct functions fn (as in Thm. 5) for which the
previous theorems are tight and thus this result is also tight.

This result generalizes all the previous bounds: Thm. 5 is the special case when N = 1, while Thm. 3
is the special-case when N = 1 and f1 is M1-smooth (for a scalar M1). The case where N > 1 but
fn is Mn-smooth (for scalar Mn) is also useful– the bound in Eq. (5) remains valid, but with a scalar
Mn.

4 Empirical Evaluation

4.1 Model and Datasets

We consider Bayesian linear regression and logistic regression models on various datasets (Table 1).
Given data {(x1, y1), · · · (xN , yN )}, let y be a vector of all yn and X a matrix of all xn. We
assume a Gaussian prior so that p(z,y|X) = N (z|0,�2I)

QN
n=1

p(yn|z,xn). For linear regression,
p(yn|z,xn) = N (yn|z>xi, ⇢2), while for logistic regression, p(yn|z,xn) = Sigmoid(ynz>xn).
For both models we use a prior of �2

= 1. For linear regression, we set ⇢2 = 4.

To justify the use of VI, apply the decomposition in Eq. (1) substituting p(z,y|X) in place of p(z,x)
to get that

log p(y|X) = E
z⇠q

log
p(z,y|X)

q(z)
+KL (q(z)kp(z|y, X)) .

Thus, adjusting the parameters of q to maximize the first term on the right tightens a lower-bound
on the conditional log likelihood log p(y|X) and minimizes the divergence from q to the posterior.
So, we again take our goal as maximizing l(w) + h(w). In the batch setting, f(z) = log p(z,y|X),
while with subsampling, fn(z) = 1

N log p(z) + log p(yn|z,xn).
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Figure 1: How loose are the bounds compared to reality? Odd Rows: Evolution of the ELBO
during the single optimization trace used to compare all estimators. Even Rows: True and bounded
variance with gradients estimated in “batch” (using the full dataset in each evaluation) and “uniform”
(stochastically with ⇡(n) = 1/N ). The first two rows are for linear regression models, while the
rest are for logistic regression. Key Observations: (i) Batch estimation is lower-variance but higher
cost (ii) variance with stochastic estimation varies little over time (iii) using matrix smoothness
significantly tightens bounds – and is exact for linear regression models.

Sec. 8 shows that if 0  �00
(t)  ✓, then

PN
n=1

�(a>
n z + bn) is M -matrix-smooth for M =

✓
PN

i=1
aia>

i . Applying this1 gives that f(z) and fn(z) are matrix-smooth for

M =
1

�2
I + c

NX

n=1

xnx
>
n , and Mn =

1

N�2
I + c xnx

>
n ,

1For linear regression, set �(t) = �t2/(2⇢2), an = xn and bn = yn and observe that �00 = �1/⇢2. For
logistic regression, set �(t) = log Sigmoid(t), an = ynxn and bn = 0 and observe that �00  1/4. Adding
the prior and using the triangle inequality gives the result.
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Figure 2: Tightening variance bounds reduces true variance. A comparison of the true (vertical
bars) and bounded E kgk2 values produced using five different gradient estimators. Batch does
not use subsampling. Uniform uses subsampling ⇡(n) = 1/N , proportional uses ⇡(n) / Mn,
opt (scalar) numerically optimizes ⇡(n) to tighten Eq. (5) with a scalar Mn and opt (matrix)
tightens Eq. (5) with a matrix Mn. For each sampling strategy, we show the variance bound both with
a scalar and matrix Mn. Uniform sampling has true and bounded values of E kgk2 ranging between
1.5x and 10x higher than those for sampling with ⇡ numerically optimized.

Dataset Type # data # dims
boston r 506 13
fires r 517 12

cpusmall r 8192 13
a1a c 1695 124

ionosphere c 351 35
australian c 690 15

sonar c 208 61
mushrooms c 8124 113

Table 1: Regression (r) and classification (c)
datasets

where c = 1/⇢2 for linear regression, and c = 1/4
for logistic regression. Taking the spectral norm
of these matrices gives scalar smoothness constants.
With subsampling, this is kMnk2 =

1

�2N + ckxnk2.

4.2 Evaluation of Bounds

To enable a clear comparison of of different estima-
tors and bounds, we generate a single optimization
trace of parameter vectors w for each dataset. All
comparisons use this same trace. These use a con-
servative optimization method: Find a maximum z̄
and then initialize to w = (z̄, 0). Then, optimization
uses proximal stochastic gradient descent (with the proximal operator reflecting h) with a step size of
1/M (the scalar smoothness constant) and 1000 evaluations for each gradient estimate.

Fig. 1 shows the evolution of the ELBO along with the variance of gradient estimation either in batch
or stochastically with a uniform distribution over data. For each iteration and estimator, we plot the
empirical kgk2 along with this paper’s bounds using either scalar or matrix smoothness.

4.3 Sampling distributions

With subsampling, variability depends on the sampling distribution ⇡. We consider uniform sampling
as well as three strategies that attempt to tighten the bound in Thm. 6. In general,

P
n f(n)

2/⇡(n) is
minimized over distributions ⇡ by ⇡(n) / |f(n)|. Thus, the tightest bound is given by
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⇡⇤
w(n) /

q
(d+ 1) kMn(m� z̄n)k22 + (d+ ) kMnCk2F . (6)

We call this “opt (scalar)” or “opt (matrix)” when Mn is a scalar or matrix, respectively. We also
consider a “proportional” heuristic with ⇡(n) / Mn for a scalar Mn. Sampling from Eq. (6) appears
to require calculating the right-hand side for each n and then normalizing, which may not be practical
for large datasets. While there are obvious heuristics for recursively approximating ⇡⇤ during an
optimization, to maintain focus we do not pursue these ideas here.

Fig. 2 shows the empirical and true variance at the final iteration of the optimization shown in
Fig. 1. The basic conclusion is that using a more careful sampling distribution reduces both true and
empirical variance.

5 Discussion

5.1 Related work

Xu et al. [21] compute the variance of a reparameterization estimator applied to a quadratic function,
when the variational distribution is a fully-factorized Gaussian. This paper can be seen as extending
this result to more general densities (full-rank location-scale families) and more general target
functions (smooth functions).

Fan et al. [4] give an abstract variance bound for RP estimators. Essentially, they argue that if
gi = rwif(Tw(u)) and rwif(Tw(u)) is M -smooth as a function of u, then V[gi]  M2⇡2/4
when u ⇠ N (0, I). While this result is fairly abstract – there is no proof that the smoothness
assumption holds for any particular M with any particular f and Tw – it is similar in spirit to the
results in this paper.

5.2 Variance vs Expected Squared Norms

The above results are on the the expected squared norm (ESN) of the gradient E kgk2. Some
stochastic gradient convergence rates instead consider (the trace of) the variance V[g]. Since trV[g] =
E kgk2 � kE gk2, ESN bounds are valid as variance bounds. Still, one can ask if these bounds are
loose. The following (proof in Sec. 7.3) gives a lower-bound that shows that there is not much to gain
from a direct bound on the variance rather than just using the ESN bound from Thm. 6.
Theorem 7. For any symmetric matrices M1, · · · ,MN and vectors z̄1, · · · , z̄N , there are functions

f1, · · · , fN such that (1) fn is Mn-matrix-smooth and has a stationary point at z̄n and (2) if s is

standardized with u 2 Rd
and E u4i = , then for g =

1

⇡(n)rfn(Tw(u)),

trV kgk2
2
�

NX

n=1

1

⇡(n)

⇣
d kMn(m� z̄n)k22 + (d+ � 1) kMnCk2F

⌘
.

When d � 1 this lower-bound is very close to the upper-bound on E kgk2 in Thm. 6. Thus, under
this paper’s assumptions, a variance bound cannot be significantly better than an ESN bound.

5.3 The Entropy Term

All discussion in this paper has been for gradient estimators for l, while the goal is of course to
optimize l + h. For location-scale families, h is known in closed-form, meaning the exact gradient –
or the proximal operator for h – can be computed exactly. Still, it has been observed that if qw is very
close to p(z|x), cancellations mean that estimating the gradient of h+ l might have lower variance
than the gradient of l alone [12].

With any variational family, it is well-known that the gradient of the entropy can be represented
as �rw Ez⇠qw log qv(z)|v=w. That is, the dependence of log qw on w can be neglected under
differentiation. Thus, if one wishes to stochastically estimate the gradient of h, one can treat log qv in
the same way as log p when calculating gradients. Then, one could apply the analysis in this paper to
f(z) = log p(z,x)� log qv(z) rather than f(z) = log p(z,x) as done above. It is easy to imagine
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situations where subtracting log qv (or a fraction of it) from log p would change Mn and z̄n in such a
way as to produce a tighter bound. Thus, the bounds in this paper are consistent with practices [5, 12]
where using log qv as a control variate can reduce gradient variance.

5.4 Smoothness and Convergence Guarantees

At a very high level, convergence rates for stochastic gradient methods require both (1) control of the
variability of the gradient estimator and (2) either convexity or Lipschitz smoothness of the objective.
This paper is dedicated entirely to the first goal. Independent recent work has addressed at the second
issue [3]. The basic summary is that if f(z) is smooth, then l(w) is smooth, and similarly if f(z) is
strongly convex. However, full convergence guarantees for black-box VI remain an open research
problem.

5.5 Prospects for Generalizing Bounds to Other Variational Families

The bounds given in this paper are closely tied to location-scale families: The exact form of the
reparameterization function Tw is used in Lem. 1 and Lem. 2, which underly the main results of
Thm. 3, Thm. 5, and Eq. (4). Thus, extending our proof strategy to other variational families would
require deriving new results analogous to Lem. 1 and Lem. 2 for the reparameterization function
Tw corresponding to those new variational families. Moreover, if the exact entropy is not available
for a variational family, the analysis must address the variance of the entropy gradient estimator, as
discussed in Sec. 5.3.

5.6 Limitations

This work has several limitations. First, it applies only to location-scale families, and requires that
the target objective be smooth. Second, if log p is smooth, it may still be challenging in practice to
establish what the smoothness constant is. Third, we observed that even with our strongest condition
of matrix smoothness, the some looseness remains in the bounds with the logistic regression examples.
Since the ESN bound is unimprovable, this looseness cannot be removed without using more detailed
structure of the target log p. It is not obvious what this structure would be, or how it would be
obtained for practical black-box inference problems.

References
[1] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for

Statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

[2] Alexander Buchholz, Florian Wenzel, and Stephan Mandt. Quasi-Monte Carlo Variational
Inference. In ICML, 2018.

[3] Justin Domke. Provable Smoothness Guarantees for Black-Box Variational Inference.
arXiv:1901.08431 [cs, stat], 2019.

[4] Kai Fan, Ziteng Wang, Jeff Beck, James Kwok, and Katherine Heller. Fast Second-Order
Stochastic Backpropagation for Variational Inference. In NeurIPS, 2015.

[5] Tomas Geffner and Justin Domke. Using Large Ensembles of Control Variates for Variational
Inference. In NeurIPS, 2018.

[6] Zoubin Ghahramani and Matthew Beal. Propagation Algorithms for Variational Bayesian
Learning. In NeurIPS, 2001.

[7] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic Variational
Inference. Journal of Machine Learning Research, 14:1303–1347, 2013.

[8] Andrew Miller, Nick Foti, Alexander D’ Amour, and Ryan P Adams. Reducing Reparameteri-
zation Gradient Variance. In NeurIPS, 2017.

[9] Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black Box Variational Inference. In
AISTATS, 2014.

9



[10] Jeffrey Regier, Kiran Pamnany, Ryan Giordano, Rollin Thomas, David Schlegel, Jon McAuliffe,
and Prabhat. Learning an Astronomical Catalog of the Visible Universe through Scalable
Bayesian Inference. arXiv:1611.03404 [astro-ph, stat], 2016.

[11] Jeffrey Regier, Michael I Jordan, and Jon McAuliffe. Fast Black-box Variational Inference
through Stochastic Trust-Region Optimization. In NeurIPS, page 10, 2017.

[12] Geoffrey Roeder, Yuhuai Wu, and David K Duvenaud. Sticking the Landing: Simple, Lower-
Variance Gradient Estimators for Variational Inference. In NeurIPS, 2017.

[13] Francisco J. R. Ruiz, Michalis K. Titsias, and David M. Blei. The Generalized Reparameteriza-
tion Gradient. In NeurIPS, 2016.

[14] Francisco J. R. Ruiz, Michalis K. Titsias, and David M. Blei. Overdispersed Black-Box
Variational Inference. arXiv:1603.01140 [stat], 2016.

[15] Tim Salimans and David A. Knowles. Fixed-Form Variational Posterior Approximation through
Stochastic Linear Regression. Bayesian Analysis, 8(4):837–882, 2013.

[16] Linda S. L. Tan and David J. Nott. Gaussian variational approximation with sparse precision
matrices. Statistics and Computing, 28(2):259–275, 2018.

[17] Michalis Titsias and Miguel Lázaro-gredilla. Doubly Stochastic Variational Bayes for non-
Conjugate Inference. In ICML, 2014.

[18] Michalis K. Titsias and Miguel Lázaro-Gredilla. Local Expectation Gradients for Black Box
Variational Inference. In NeurIPS, 2015.

[19] David Wingate and Theophane Weber. Automated Variational Inference in Probabilistic Pro-
gramming. arXiv:1301.1299 [cs, stat], 2013.

[20] John Winn and Christopher M Bishop. Variational Message Passing. Journal of Machine

Learning Research, 6:661–694, 2005.

[21] Ming Xu, Matias Quiroz, Robert Kohn, and Scott A. Sisson. Variance reduction properties of
the reparameterization trick. In AISTATS, 2019.

[22] Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but Did It Work?:
Evaluating Variational Inference. In ICML, 2018.

10


