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Abstract

We investigate a sequential optimization procedure to minimize the empirical
risk functional fθ̂(x) = 1

2‖Gθ̂(x) − y‖2 for certain families of deep networks

Gθ(x). The approach is to optimize a sequence of objective functions that use
network parameters obtained during different stages of the training process. When
initialized with random parameters θ0, we show that the objective fθ0(x) is “nice”
and easy to optimize with gradient descent. As learning is carried out, we obtain a
sequence of generative networks x 7→ Gθt(x) and associated risk functions fθt(x),
where t indicates a stage of stochastic gradient descent during training. Since the
parameters of the network do not change by very much in each step, the surface
evolves slowly and can be incrementally optimized. The algorithm is formalized
and analyzed for a family of expansive networks. We call the procedure surfing
since it rides along the peak of the evolving (negative) empirical risk function,
starting from a smooth surface at the beginning of learning and ending with a wavy
nonconvex surface after learning is complete. Experiments show how surfing can
be used to find the global optimum and for compressed sensing even when direct
gradient descent on the final learned network fails.

1 Introduction

Intensive recent research has provided insight into the performance and mathematical properties of
deep neural networks, improving understanding of their strong empirical performance on different
types of data. Some of this work has investigated gradient descent algorithms that optimize the
weights of deep networks during learning (Du et al., 2018b,a; Davis et al., 2018; Li and Yuan, 2017;
Li and Liang, 2018). In this paper we focus on optimization over the inputs to an already trained deep
network in order to best approximate a target data point. Specifically, we consider the least squares
objective function

fθ̂(x) =
1

2
‖Gθ̂(x)− y‖2

where Gθ(x) denotes a multi-layer feed-forward network and θ̂ denotes the parameters of the network

after training. The network is considered to be a mapping from a latent input x ∈ R
k to an output

Gθ(x) ∈ R
n with k ≪ n. A closely related objective is to minimize fθ,A(x) =

1
2‖AGθ(x)−Ay‖2

where A is a random matrix.
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Figure 1: Behavior of the surfaces x 7→ − 1
2‖Gθt(x)− y‖2 for two targets y shown for three levels

of training,from random networks (left) to fully trained networks (right) on Fashion MNIST data.
The network structure has two fully connected layers and two transposed convolution layers with
batch normalization, trained as a VAE.

Hand and Voroninski (2019) study the behavior of the function fθ0,A in a compressed sensing frame-
work where y = Gθ0(x0) is generated from a random network with parameters θ0 = (W1, . . . ,Wd)
drawn from Gaussian matrix ensembles; thus, the network is not trained. In this setting, it is shown
that the surface is very well behaved. In particular, outside of small neighborhoods around x0 and a
scalar multiple of −x0, the function fθ0,A(x) always has a descent direction.

When the parameters of the network are trained, the landscape of the function fθ̂(x) can be compli-
cated; it will in general be nonconvex with multiple local optima. Figure 1 illustrates the behavior of
the surfaces as they evolve from random networks (left) to fully trained networks (right) for 4-layer
networks trained on Fashion MNIST using a variational autoencoder. For each of two target values y,
three surfaces x 7→ − 1

2‖Gθt(x)− y‖2 are shown for different levels of training.

This paper explores the following simple idea. We incrementally optimize a sequence of objective

functions fθ0 , fθ1 , . . . , fθT where the parameters θ0, θ1, . . . , θT = θ̂ are obtained using stochastic
gradient descent in θ during training. When initialized with random parameters θ0, we show that
the empirical risk function fθ0(x) =

1
2‖Gθ0(x)− y‖2 is “nice” and easy to optimize with gradient

descent. As learning is carried out, we obtain a sequence of generative networks x 7→ Gθt(x) and
associated risk functions fθt(x), where t indicates an intermediate stage of stochastic gradient descent
during training. Since the parameters of the network do not change by very much in each step (Du
et al., 2018a,b), the surface evolves slowly. We initialize x for the current network Gθt(x) at the
optimum x∗

t−1 found for the previous network Gθt−1
(x) and then carry out gradient descent to obtain

the updated point x∗
t = argminx fθt(x).

We call this process surfing since it rides along the peaks of the evolving (negative) empirical
risk function, starting from a smooth surface at the beginning of learning and ending with a wavy
nonconvex surface after learning is complete. We formalize this algorithm in a manner that makes it
amenable to analysis. First, when θ0 is initialized so that the weights are random Gaussian matrices,
we prove a theorem showing that the surface has a descent direction at each point outside of a small
neighborhood. The analysis of Hand and Voroninski (2019) does not directly apply in our case since
the target y is an arbitrary test point, and not necessarily generated according to the random network.
We then give an analysis that describes how projected gradient descent can be used to proceed from
the optimum of one network to the next. Our approach is based on the fact that the ReLU network
and squared error objective result in a piecewise quadratic surface. Experiments are run to show
how surfing can be used to find the global optimum and for compressed sensing even when direct
gradient descent fails, using several experimental setups with networks trained with both VAE and
GAN techniques.
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2 Background and Previous Results

In this work we treat the problem of approximating an observed vector y in terms of the output Gθ̂(x)
of a trained generative model. Traditional generative processes such as graphical models are statistical
models that define a distribution over a sample space. When deep networks are viewed as generative
models, the distribution is typically singular, being a deterministic mapping of a low-dimensional
latent random vector to a high-dimensional output space. Certain forms of “reversible deep networks”
allow for the computation of densities and inversion (Dinh et al., 2017; Kingma and Dhariwal, 2018;
Chen et al., 2018).

The variational autoencoder (VAE) approach training a generative (decoder) network is to model
the conditional probability of x given y as Gaussian with mean µ(y) and covariance Σ(y) assuming
that a priori x ∼ N(0, Ik) is Gaussian. The mean and covariance are treated as the output of a
secondary (encoder) neural network. The two networks are trained by maximizing the evidence
lower bound (ELBO) with coupled gradient descent algorithms—one for the encoder network, the
other for the decoder network Gθ(x) (Kingma and Welling, 2014). Whether fitting the networks
using a variational or GAN approach (Goodfellow et al., 2014; Arjovsky et al., 2017), the problem of
“inverting” the network to obtain x∗ = argmin fθ(x) is not addressed by the training procedure.

In the now classical compressed sensing framework (Candes et al., 2006; Donoho et al., 2006), the
problem is to reconstruct a sparse signal after observing multiple linear measurements, possibly with
added noise. More recent work has begun to investigate generative deep networks as a replacement
for sparsity in compressed sensing. Bora et al. (2017) consider identifying y = G(x0) from linear
measurements Ay by optimizing f(x) = 1

2‖Ay − AG(x)‖2. Since this objective is nonconvex,
it is not guaranteed that gradient descent will converge to the true global minimum. However,
for certain classes of ReLU networks it is shown that so long as a point x̂ is found for which
f(x̂) is sufficiently close to zero, then ‖y − G(x̂)‖ is also small. For the case where y does
not lie in the image of G, an oracle type bound is shown implying that the solution x̂ satisfies
‖G(x̂)− y‖2 ≤ C infx ‖G(x)− y‖2 + δ for some small error term δ. The authors observe that in
experiments the error seems to converge to zero when x̂ is computed using simple gradient descent;
but an analysis of this phenomenon is not provided.

Hand and Voroninski (2019) establish the important result that for a d-layer random network and
random measurement matrix A, the least squares objective has favorable geometry, meaning that
outside two small neighborhoods there are no first order stationary points, neither local minima nor
saddle points. We describe their setup and result in some detail, since it provides a springboard for
the surfing algorithm.

Let G : Rk → R
n be a d-layer fully connected feedforward generative neural network, which has the

form

G(x) = σ(Wd...σ(W2σ(W1x))...)

where σ is the ReLU activation function. The matrix Wi ∈ Rni×ni−1 is the set of weights for the ith
layer and ni is number of the neurons in this layer with k = n0 < n1 < ... < nd = n. If x0 ∈ R

k

is the input then AG(x0) is a set of random linear measurements of the signal y = G(x0). The

objective is to minimize fA,θ0(x) =
1
2

∥∥AGθ0(x)− AGθ0(x0)
∥∥2 where θ0 = (W1, . . . ,Wd) is the

set of weights.

Due to the fact that the nonlinearities σ are rectified linear units, Gθ0(x) is a piecewise linear function.
It is convenient to introduce notation that absorbs the activation σ into weight matrix Wi, denoting

W+,x = diag(Wx > 0)W.

For a fixed W , the matrix W+,x zeros out the rows of W that do not have a positive dot product with
x; thus, σ(Wx) = W+,xx. We further define W1,+,x = diag(W1x > 0)W1 and

Wi,+,x = diag(WiWi−1,+,x...W1,+,xx > 0)Wi.

With this notation, we can rewrite the generative network Gθ0 in what looks like a linear form,

Gθ0(x) = Wd,+,xWd−1,+,x...W1,+,xx,

noting that each matrix Wi,+,x depends on the input x.
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If fA,θ0(x) is differentiable at x, we can write the gradient as

∇fA,θ0(x) =
( 1∏

i=d

Wi,+,x

)T

ATA
( 1∏

i=d

Wi,+,x

)
x−

( 1∏

i=d

Wi,+,x

)T

ATA
( 1∏

i=d

Wi,+,x0

)
x0.

In this expression, one can see intuitively that under the assumption that A and Wi are Gaussian
matrices, the gradient ∇fθ0(x) should concentrate around a deterministic vector vx,x0

. Hand and
Voroninski (2019) establish sufficient conditions for concentration of the random matrices around
deterministic quantities, so that vx,x0

has norm bounded away from zero if x is sufficiently far from
x0 or a scalar multiple of −x0. Their results show that for random networks having a sufficiently
expansive number of neurons in each layer, the objective fA,θ0 has a landscape favorable to gradient
descent.

We build on these ideas, showing first that optimizing with respect to x for a random network and
arbitrary signal y can be done with gradient descent. This requires modified proof techniques, since
it is no longer assumed that y = Gθ0(x0). In fact, y can be arbitrary and we wish to approximate
it as Gθ̂(x(y)) for some x(y). Second, after this initial optimization is carried out, we show how
projected gradient descent can be used to track the optimum as the network undergoes a series of
small changes. Our results are stated formally in the following section.

3 Theoretical Results

Suppose we have a sequence of networks G0, G1, . . . , GT generated from the training process. For
instance, we may take a network with randomly initialized weights as G0, and record the network
after each step of gradient descent in training; GT = G is the final trained network.

Algorithm 1 Surfing

Input: Sequence of networks θ0, θ1, . . . , θT
1: x−1 ← 0
2: for t = 0 to T do
3: x← xt−1

4: repeat
5: x← x− η∇fθt(x)
6: until convergence
7: xt ← x

Output: xT

For a given vector y ∈ R
n, we wish to minimize the

objective f(x) = 1
2‖AG(x) − Ay‖2 with respect

to x for the final network G, where either A = I ∈
R

n×n, or A ∈ R
m×n is a measurement matrix with

i.i.d. N (0, 1/m) entries in a compressed sensing
context. Write

ft(x) =
1

2
‖AGt(x)−Ay‖2, ∀ t ∈ [T ]. (1)

The idea is that we first minimize f0, which has a
nicer landscape, to obtain the minimizer x0. We
then apply gradient descent on ft for t = 1, 2, ..., T
successively, starting from the minimizer xt−1 for the previous network.

We provide some theoretical analysis in partial support of this algorithmic idea. First, we show that at
random initialization G0, all critical points of f0(x) are localized to a small ball around zero. Second,
we show that if G0, . . . , GT are obtained from a discretization of a continuous flow, along which the
global minimizer of ft(x) is unique and Lipschitz-continuous, then a projected-gradient version of
surfing can successively find the minimizers for G1, . . . , GT starting from the minimizer for G0.

We consider expansive feedforward neural networks G : Rk ×Θ 7→ R
n given by

G(x, θ) = V σ(Wd . . . σ(W2σ(W1x+ b1) + b2) . . .+ bd).

Here, d is the number of intermediate layers (which we will treat as constant), σ is the ReLU
activation function σ(x) = max(x, 0) applied entrywise, and θ = (V,W1, ...,Wd, b1, ..., bd) are the
network parameters. The input dimension is k ≡ n0, each intermediate layer i ∈ [d] has weights
Wi ∈ R

ni×ni−1 and biases bi ∈ R
ni , and a linear transform V ∈ R

n×nd is applied in the final layer.

For our first result, consider fixed y ∈ R
n and a random initialization G0(x) ≡ G(x, θ0) where θ0

has Gaussian entries (independent of y). If the network is sufficiently expansive at each intermediate
layer, then the following shows that with high probability, all critical points of f0(x) belong to a
small ball around 0. More concretely, the directional derivative D−x/‖x‖f0(x) satisfies

D−x/‖x‖f0(x) ≡ lim
t→0+

f0(x− tx/‖x‖)− f0(x)

t
< 0. (2)

Thus −x/‖x‖ is a first-order descent direction of the objective f0 at x.
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Theorem 3.1. Fix y ∈ R
n. Let V haveN (0, 1/n) entries, let bi and Wi haveN (0, 1/ni) entries for

each i ∈ [d], and suppose these are independent. There exist d-dependent constants C,C ′, c, ε0 > 0
such that for any ε ∈ (0, ε0), if

1. n ≥ nd and ni > C(ε−2 log ε−1)ni−1 log ni for all i ∈ [d], and

2. Either A = I and m = n, or A ∈ R
m×n has i.i.d. N (0, 1/m) entries (independent of

V, {bi}, {Wi}) where m ≥ Ck(ε−1 log ε−1) log(n1 . . . nd),

then with probability at least 1 − C(e−cεm + nde
−cε4nd−1 +

∑d−1
i=1 nie

−cε2ni−1), every x ∈ R
k

outside the ball ‖x‖ ≤ C ′ε(1 + ‖y‖) satisfies (2).

We defer the proof to the supplementary material. Note that if instead G0 were correlated with y, say
y = G0(x∗) for some input x∗ with ‖x∗‖ ≍ 1, then x∗ would be a global minimizer of f0(x), and
we would have ‖y‖ ≍ ‖xd‖ ≍ . . . ≍ ‖x1‖ ≍ ‖x∗‖ ≍ 1 in the above network where xi ∈ R

ni is the
output of the ith layer. The theorem shows that for a random initialization of G0 which is independent
of y, the minimizer is instead localized to a ball around 0 which is smaller in radius by the factor ε.

For our second result, consider a network flow

Gs(x) ≡ G(x, θ(s))

for s ∈ [0, S], where θ(s) = (V (s),W1(s), b1(s), . . . ,Wd(s), bd(s)) evolve continuously in a time
parameter s. As a model for network training, we assume that G0, . . . , GT are obtained by discrete
sampling from this flow via Gt = Gδt, corresponding to s ≡ δt for a small time discretization step δ.

We assume boundedness of the weights and uniqueness and Lipschitz-continuity of the global
minimizer along this flow.

Assumption 3.2. There are constants M,L <∞ such that

1. For every i ∈ [d] and s ∈ [0, S],
‖Wi(s)‖ ≤M.

2. The global minimizer x∗(s) = argminx f(x, θ(s)) is unique and satisfies

‖x∗(s)− x∗(s
′)‖ ≤ L|s− s′|

where f(x, θ(s)) = 1
2‖AG(x, θ(s))−Ay‖2.

Fixing θ, the function G(x, θ) is continuous and piecewise-linear in x. For each x ∈ R
k, there is at

least one linear piece P0 (a polytope in R
k) of this function that contains x. For a slack parameter

τ > 0, consider the rows given by

S(x, θ, τ) = {(i, j) : |w⊤
i,jxi−1 + bi,j | ≤ τ},

where

xi−1 = σ(Wi−1 . . . σ(W1x+ b1) . . .+ bi−1)

is the output of the (i − 1)th layer for this input x, and v⊤j , w⊤
i,j , and bi,j are respectively the jth

row of V , the jth row of Wi and the jth entry of bi in θ. This set S(x, θ, τ) represents those neurons
that are close to 0 before ReLU thresholding, and hence whose activations may change after a small
change of the network input x. Define

P(x, θ, τ) = {P0, P1, . . . , PG}

as the set of all linear pieces Pg whose activation patterns differ from P0 only in rows belonging to
S(x, θ, τ). That is, for every x′ ∈ Pg ∈ P(x, θ, τ) and (i, j) /∈ S(x, θ, τ), we have

sign(w⊤
i,jx

′
i−1 + bi,j) = sign(w⊤

i,jxi−1 + bi,j)

where x′
i−1 is the output of the (i− 1)th layer for input x′.

With this definition, we consider a stylized projected-gradient surfing procedure in Algorithm 2,
where ProjP is the orthogonal projection onto the polytope P .
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Algorithm 2 Projected-gradient Surfing

Input: Network flow {G(·, θ(s)) : s ∈ [0, S]}, parameters δ, τ, η > 0.
1: Initialize x0 = argminx f(x, θ(0)).
2: for t = 1, . . . , T do
3: for each linear piece Pg ∈ P(xt−1, θ(δt), τ) do
4: x← xt−1

5: repeat
6: x← ProjPg

(x− η∇f(x, θ(δt)))
7: until convergence

8: x
(g)
t ← x

9: xt ← x
(g)
t for g ∈ {0, . . . , G} that achieves the minimum value of f(x

(g)
t , θ(δt)).

Output: xT

The complexity of this algorithm depends on the number of pieces G to be optimized over in each
step. We expect this to be small in practice when the slack parameter τ is chosen sufficiently small,
and provide a heuristic argument in the supplement indicating why this may be the case.

The following shows that for any τ > 0, there is a sufficiently fine time discretization δ depending
on τ,M,L such that Algorithm 2 tracks the global minimizer. In particular, for the final objective
fT (x) = f(x, θ(δT )) corresponding to the network GT , the output xT is the global minimizer of
fT (x). We remark that the time discretization δ may need to be smaller for deeper networks, as G(x)
corresponding to a deeper network may have a larger Lipschitz constant in x. The specific dependence

below arises from bounding this Lipschitz constant by
∏d

i=1 ‖Wi‖, which is a conservative bound
also used and discussed in greater detail in Szegedy et al. (2014); Virmaux and Scaman (2018).

Theorem 3.3. Suppose Assumption 3.2 holds. For any τ > 0, if δ < τ/(Lmax(M, 1)d+1) and
x0 = argminx f(x, θ(0)), then the iterates xt in Algorithm 2 are given by xt = argminx f(x, θ(δt))
for each t = 1, . . . , T .

Proof. For any fixed θ, let x, x′ ∈ R
k be two inputs to G(x, θ). If xi, x

′
i are the corresponding

outputs of the ith layer, using the assumption ‖Wi‖ ≤M and the fact that the ReLU activation σ is
1-Lipschitz, we have

‖xi − x′
i‖ = ‖σ(Wixi−1 + bi)− σ(Wix

′
i−1 + bi)‖

≤ ‖(Wixi−1 + bi)− (Wix
′
i−1 + bi)‖

≤M‖xi−1 − x′
i−1‖ ≤ . . . ≤M i‖x− x′‖.

Let x∗(s) = argminx f(x, θ(s)). By assumption, ‖x∗(s− δ)− x∗(s)‖ ≤ Lδ. For the network with
parameter θ(s) at time s, let x∗,i(s) and x∗,i(s− δ) be the outputs at the ith layer corresponding to
inputs x∗(s) and x∗(s− δ). Then for any i ∈ [d] and j ∈ [ni], the above yields

|(wi,j(s)
⊤x∗,i(s− δ) + bi,j)− (wi,j(s)

⊤x∗,i(s) + bi,j)| ≤ ‖wi,j(s)‖‖x∗,i(s− δ)− x∗,i(s)‖

≤M ·M i‖x∗(s− δ)− x∗(s)‖ ≤M i+1Lδ.

For δ < τ/(Lmax(M, 1)d+1), this implies that for every (i, j) where |wi,j(s)
⊤x∗,i(s−δ)+bi,j | ≥ τ ,

we have
sign(wi,j(s)

⊤x∗,i(s− δ) + bi,j) = sign(wi,j(s)
⊤x∗,i(s) + bi,j).

That is, x∗(s) ∈ Pg for some Pg ∈ P(x∗(s− δ), θ(s), τ).

Assuming that xt−1 = x∗(δ(t− 1)), this implies that the next global minimizer x∗(δt) belongs to
some Pg ∈ P(xt−1, θ(δt), τ). Since f(x, θ(δt)) is quadratic on Pg , projected gradient descent over
Pg in Algorithm 2 converges to x∗(δt), and hence Algorithm 2 yields xt = x∗(δt). The result then
follows from induction on t.

4 Experiments

We present experiments to illustrate the performance of surfing over a sequence of networks during
training compared with gradient descent over the final trained network. We mainly use the Fashion-
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Input dimension 5 10 20 5 10 20

Model VAE DCGAN

% successful
Regular Adam 98.7 100 100 48.3 68.7 80.0
Surfing 100 100 100 78.3 98.7 96.3

# iterations
Regular Adam 737 1330 8215 618 4560 18937
Surfing 775 1404 10744 741 6514 33294

Model WGAN WGAN-GP

% successful
Regular Adam 56.0 84.3 90.3 47.0 64.7 64.7
Surfing 81.7 97.3 99.3 83.7 95.7 97.3

# iterations
Regular Adam 464 1227 3702 463 1915 15445
Surfing 547 1450 4986 564 2394 25991

Table 1: Surfing compared against direct gradient descent over the final trained network, for various
generative models with input dimensions k = 5, 10, 20. Shown are percentages of “successful”
solutions x̂T satisfying ‖x̂T − x∗‖ < 0.01, and 75th-percentiles of the total number of gradient
descent steps used (across all networks G0, . . . , GT for surfing) until ‖x̂T −x∗‖ < 0.01 was reached.
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Figure 2: Distribution of distance between solution x̂T and the truth x∗ for DCGAN trained models,
comparing surfing (red) to regular gradient descent (blue) over the final network. Both procedures use
Adam in their gradient descent computations. The results indicate that direct descent often succeeds,
but can also converge to a point that is far from the optimum. By moving along the optimum of the
evolving surface, surfing is able to move closer to the optimum in these cases.

MNIST dataset to carry out the simulations, which is similar to MNIST in many characteristics, but
is more difficult to train. We build multiple generative models, trained using VAE (Kingma and
Welling, 2014), DCGAN (Radford et al., 2015), WGAN (Arjovsky et al., 2017) and WGAN-GP
(Gulrajani et al., 2017). The structure of the generator/decoder networks that we use are the same
as those reported by Chen et al. (2016); they include two fully connected layers and two transposed
convolution layers with batch normalization after each layer (Ioffe and Szegedy, 2015). We use the
simple surfing algorithm in these experiments, rather than the projected-gradient algorithm proposed
for theoretical analysis. Note also that the network architectures do not precisely match the expansive
relu networks used in our analysis. Instead, we experiment with architectures and training procedures
that are meant to better reflect the current state of the art.

We first consider the problem of minimizing the objective f(x) = 1
2‖G(x)−G(x∗)‖

2 and recovering
the image generated from a trained network G(x) = GθT (x) with input x∗. We run surfing by taking
a sequence of parameters θ0, θ1, ..., θT for T = 100, where θ0 are the initial random parameters and
the intermediate θt’s are taken every 40 training steps, and we use Adam (Kingma and Ba, 2014) to
carry out gradient descent in x over each network Gθt . We compare this to “regular Adam”, which
uses Adam to optimize over x in only the final trained network GθT for T = 100.

To ensure that the runtime of surfing is comparable to that of a single initialization of regular Adam,
we do not run Adam until convergence for each intermediate network in surfing. Instead, we use
a fixed schedule of iterations for the networks Gθ0 , . . . , GθT−1

, and run Adam to convergence in
only the final network GθT . The total number of iterations for networks Gθ0 , . . . , GθT−1

is set as the
75th-percentile of the iteration count required for convergence of regular Adam. These are split across
the networks proportional to a deterministic schedule that allots more steps to the earlier networks
where the landscape of G(x) changes more rapidly, and fewer steps to later networks where this
landscape stabilizes.
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Figure 3: Compressed sensing setting for exact recovery. As a function of the number of random
measurements m, the lines show the proportion of times surfing (red) and regular gradient descent
with Adam (blue) are able to recover the true signal y = G(x), using DCGAN and WGAN.
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Figure 4: Compressed sensing setting for approximation, or rate-distortion. As a function of the
number of random measurements m, the box plots summarize the distribution of the per-pixel
reconstruction errors for DCGAN and WGAN trained models, using surfing (red) and regular
gradient descent with Adam (blue).

For each network training condition, we apply surfing and regular Adam for 300 trials, where in
each trial a randomly generated x∗ and initial point xinit are chosen uniformly from the hypercube
[−1, 1]k. Table 1 shows the percentage of trials where the solutions x̂T satisfy our criterion for
successful recovery ‖x̂T −x∗‖ < 0.01, for different models and over three different input dimensions
k. The table also shows the 75th-percentile for the total number of gradient descent iterations taken
(across all networks for surfing), verifying that the runtime of surfing was typically 1–2x that of
regular Adam. We also provide the distributions of ‖x̂T − x∗‖ under each setting: Figure 2 shows
the results for DCGAN, and results for the other models are collected in the supplementary material.

We next consider the compressed sensing problem with objective f(x) = 1
2‖AG(x)− AG(x∗)‖

2

where A ∈ R
m×n is the Gaussian measurement matrix. We carry out 200 trials for each choice

of number of measurements m. The parameters θt for surfing are taken every 100 training steps.
As before, we record the proportion of the solutions that are close to the truth x∗ according to
‖x̂T − x∗‖ < 0.01. Figure 3 shows the results for DCGAN and WGAN trained networks with input
dimension k = 20.

Lastly, we consider the objective f(x) = 1
2‖AG(x)−Ay‖2, where y is a real image from the hold-out

test data. This can be thought of as a rate-distortion setting, where the error varies as a function of
the number of measurements used. We carry out the same experiments as before and compute the

average per-pixel reconstruction error

√
1
n‖G(x̂T )− y‖2 as in Bora et al. (2017). Figure 4 shows

the distributions of the reconstruction error as the number of measurements m varies.

5 Discussion

This paper has explored the idea of incrementally optimizing a sequence of objective risk functions
obtained for models that are slowly changing during stochastic gradient descent during training.
When initialized with random parameters θ0, we have shown that the empirical risk function fθ0(x) =
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1
2‖Gθ0(x) − y‖2 is well behaved and easy to optimize. The surfing algorithm initializes x for the
current network Gθt(x) at the optimum x∗

t−1 found for the previous network Gθt−1
(x) and then

carries out gradient descent to obtain the updated point x∗
t = argminx fθt(x). Our experiments show

that this scheme has merit, and often significantly outperforms direct gradient descent on the final
model alone.

On the theoretical side, our main technical result applies and extends ideas of Hand and Voroninski
(2019) to show that for random ReLU networks that are sufficiently expansive, the surface of fθ0(x)
is well-behaved for arbitrary target vectors y. This result may be of independent interest, but it
is essential for the surfing algorithm because initially the model is poor, with high approximation
error. The analysis for the incremental scheme uses projected gradient descent, although we find
that simple gradient descent works well in practice. The analysis assumes that the argmin over the
surface evolves continuously in training. This assumption is necessary—if the global minimum is
discontinuous as a function of t, so that the minimizer “jumps” to a far away point, then the surfing
procedure will fail in practice.

In our experiments, we see that simple surfing can indeed be effective for mapping outputs y to inputs
x for the trained network, where it often outperforms direct gradient descent for a range of deep
network architectures and training procedures. However, these simulations also point to the fact that
in some settings, direct gradient descent itself can be surprisingly effective. A deeper understanding
of this phenomenon could lead to more advanced surfing algorithms that are able to ride to the final
optimum even more efficiently and often.
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