
ε-Best-Arm Identification in Pay-Per-Reward
Multi-Armed Bandits

Sivan Sabato
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel 8410501
sabatos@cs.bgu.ac.il

Abstract

We study ε-best-arm identification, in a setting where during the exploration phase,
the cost of each arm pull is proportional to the expected future reward of that arm.
We term this setting Pay-Per-Reward. We provide an algorithm for this setting, that
with a high probability returns an ε-best arm, while incurring a cost that depends
only linearly on the total expected reward of all arms, and does not depend at all
on the number of arms. Under mild assumptions, the algorithm can be applied also
to problems with infinitely many arms.

1 Introduction

Consider placing an ad next to search engine results, based on the search query. In a preliminary
survey for a future promotion, a retailer wishes to identify the best query expression to link to its ad,
that is, the expression that maximizes the expected number of clicks on the ad. The payment per ad is
proportional to the number of clicks. However, during the survey, clicks do not lead to profit, while
the payment is still due.

This problem can be formulated as a type of best-arm-identification problem in a stochastic multi-
armed bandit (MAB) setting [see, e.g., 14, 15, 8, 3]. In stochastic MAB, there is a set of arms, each
associated with a non-negative reward distribution. Each pull of an arm draws an instantaneous
reward from the corresponding reward distribution. The MAB algorithm iteratively pulls arms and
observes their instantaneous rewards. At the end of the run, the algorithm selects one arm. The
goal is to find an arm with a near-maximal expected reward with a high probability. In the example
above, each arm in the MAB framework can be mapped to a specific search expression, and pulling
the arm is equivalent to linking the ad to the expression represented by this arm for a given period
of time, and then observing the number of clicks. In standard MAB, each arm pull incurs a unit
cost. However, in the example above, the cost of pulling an arm is the number of clicks on the ad,
assuming the common pay-per-click advertisement model. Thus, the expected cost in the survey stage
is proportional to the expected reward after the survey stage. We term this setting Pay-Per-Reward
(PPR). Other applications of this model include any case where there is an exploration stage in which
rewards are not collected, but payment is still proportional to the quality of the arm. For instance,
consider a sensor field, where the goal is to find the most active sensor, but each activity report has
a communication cost. Here, “pulling an arm” is done by activating the sensor’s reporting option
for a given period of time. Another example is finding the best crowd worker on a crowd-sourcing
platform. Here, an "arm pull" is equivalent to providing the worker with a test task. The workers are
paid according to their success rate in the test task, thus a more successful worker will be paid more
during the exploration stage.

Our contribution. We provide an algorithm, MAB-PPR, for the pay-per-reward setting, that finds
an ε-optimal arm with a probability of at least 1− δ, for given ε, δ ∈ (0, 1). We show that the cost
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incurred by MAB-PPR has no dependence on the number of arms, and only a linear dependence on
the total expected reward of all arms. Our results generalize beyond bounded reward distributions,
and support some heavy-tailed distributions with bounded second moments. Under mild assumptions,
the algorithm can be applied also to problems with infinitely many arms.

Since the cost of MAB-PPR is independent of the number of arms, it is especially useful when the
number of arms is potentially very large, while the total expected reward is bounded. For instance, in
the ad-placement example, the number of arms is proportional to the number of admissible search
expressions, which can be practically unbounded, but only a small number of those are expected to
have large click rates when linked to a specific ad. Other applications in which the number of arms
can be very large include, for instance, recommender systems [32], content personalization [24] and
web-content optimization [1].

For the standard setting, in which each arm pull has a unit cost, [14] provided an ε-best-arm
identification algorithm with a sample complexity that depends linearly on the number of arms,
using an algorithm that they term the median-elimination algorithm. This algorithm halves the
number of candidate arms in each round based on their empirical mean rewards. Instead, in our
setting, one should try to halve the total expected reward of the arms that remain in each round. This
requires a new estimation scheme. Another challenge in the PPR setting is that due to the potentially
unbounded number of arms, sums of instantaneous rewards of sets of arms do not have a bounded
support, even if single-arm rewards are bounded. Moreover, in some settings one might prefer to
simultaneously pull an entire set of arms from the joint distribution of rewards of all arms. Thus,
standard assumptions on independence between arms do not necessarily hold.

MAB-PPR addresses these challenges using a two-step estimation procedure in each round, combined
with heavy-tailed mean estimation. This guarantees success even under some dependence between
arms. Support for some unbounded reward distributions of single arms is easily obtained within this
framework, by using heavy-tailed mean estimation for the expected rewards of single arms as well.
Our analysis shows that the PPR setting can be successfully handled in a wide range of regimes.

Paper structure After discussing related work, we present the setting and preliminaries in Section 2.
The main result is stated in Section 3. The MAB-PPR algorithm is listed and described in Section 4.
We prove the main result in Section 5, and conclude in Section 6.

1.1 Related work

[14] formulated the stochastic MAB ε-best-arm identification problem (also termed the PAC setting)
for bounded rewards. They showed that the number of pulls can be linear in the number of arms,
without logarithmic factors that would be necessary in a naive algorithm that pulls all arms the same
number of times. Closely matching lower bounds for this setting were given in [22]. Instance-specific
bounds in this setting were studied in [19, 17, 12]. A fixed-budget variant was studied in [8, 3, 10].

The works above assume the standard cost model for MAB, in which each arm pull costs one unit. A
different cost model has been studied in the setting of budgeted MAB [25, 26, 13, 27, 29, 20]. Here,
arms are associated with a random or deterministic cost, in addition to a reward distribution, and
the goal is to maximize the cumulative reward within total cost constraints. [30] studied a best-arm
variant of this problem. MAB with infinitely many arms, also termed many-armed bandits, has been
studied in the unit-cost model both for the cumulative regret setting [5, 6, 28, 20] and for exploration
settings [11, 4]. [20] study infinitely-many arms in the budgeted MAB setting.

A useful tool for mean estimation for heavy-tailed random variables is median-of-means estimation
[2]. This tool has been recently used in various contexts in machine learning [e.g., 23, 7, 16, 21, 18].
MAB with heavy-tailed rewards under the standard unit-cost model was studied in the regret setting
[9] and for pure exploration with unbounded rewards [31].

2 Setting and Preliminaries

For an integer i, denote [i] := {1, . . . , i}. Let K be the total number of available arms, and denote the
set of available arms by [K].1 Let X1, . . . , XK be the random variables associated with the reward

1We discuss in Section 4 how to use MAB-PPR when the set of available arms is infinite or unknown.
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distributions of the corresponding arms. We assume that the random variables are non-negative, and
have a finite expectation and variance. Pulling arm i is equivalent to drawing an independent copy of
Xi and observing its value. We study here a more general setting, in which sets of arms can be pulled
simultaneously. We assume some joint distribution of the random vector X = (X1, . . . , XK). A pull
of a specific set of arms is equivalent to drawing an independent copy of X and observing the rewards
of all the arms in the set. The standard setting, in which arms are pulled one by one, is equivalent to
assuming that X1, . . . , XK are statistically independent in X. Thus, we generally assume below that
sets are simultaneously pulled.

Denote the expected reward of arm i by wi := E[Xi], termed below the arm’s weight. Let W :=∑
i∈[K] wi. For a set A ⊆ [K], denote XA :=

∑
i∈AXi and WA :=

∑
i∈A wi. Consider a run of

the algorithm in which the total number of times each arm is pulled (regardless of whether some of
the arms were pulled simultaneously) is n, and let I1, . . . , In be the sequence of pulled arms. The
cost of the algorithm in this run is

∑
i∈[n] wIi . We make two assumptions on the distribution of X.

Assumption 2.1. For all i ∈ [K], σ2
i := Var(Xi) ≤ wi ≤ 1.

This assumption clearly holds if Xi are bounded in [0, 1]. Nonetheless, it is more general, and can
hold also for reward distributions with unbounded support.

Assumption 2.2. There is a constant V ≥ 0, such that for any subset of the arms A ⊆ [K],
σ2
A := Var(XA) ≤ VWA.

Assumption 2.2 trivially holds with V = 1 if arm-pulls of individual arms are statistically independent,
as when they are pulled separately. In this case, σ2

A =
∑
i∈A σ

2
i ≤

∑
i∈A wi = WA, where

Assumption 2.1 was used to bound σ2
i . If arm rewards are not statistically independent, then the

existence and value of the constant V depend on the distribution of X. For instance, if each arm is
positively correlated with at most Q other arms, then V can be upper bounded by 1 + 2Q (see the
supplementary material, Appendix A). We note that our results below are indifferent to values of V
as large as 1

ε .

We use the median-of-means method [2] to estimate the mean of a distribution with a bounded
variance. In this method, q batches of ` independent samples are used; A separate empirical mean is
calculated from each batch, and the estimate is the median of these means. Formally, the (q, `)-MoM
estimator of a random variable X from a sample of i.i.d. draws {xi,j}i∈[q],j∈[`] of X , is defined
as Median{ 1

`

∑
j∈[`] xi,j | i ∈ [q]}. We use the following formulation of the result of [2] on the

convergence of the MoM estimator to the true mean, similarly to [16]. The proof is provided for
completeness in the supplementary material, Appendix B.

Lemma 2.3 (Median-of-Means). Let X be a random variable with mean w and variance σ2 <∞.
Let q, ` be integers, and let ŵ be the (q, `)-MoM estimate of w from a sample of q` i.i.d. draws of
copies of X . With a probability at least 1− exp(− 2

9q), we have |w − ŵ| ≤
√

6σ2/`.

3 Main result

We propose the MAB-PPR algorithm, which accepts parameters ε, δ ∈ (0, 1), iteratively pulls arms,
and outputs a single arm. MAB-PPR satisfies the following guarantee.

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold. Let W :=
∑
i∈[K] wi, and let V as

defined in Assumption 2.2. With a probability of at least 1− δ, MAB-PPR returns an ε-optimal arm,
and its cost is upper bounded by

O

(
W log(1/δ) ·max

(
1

ε2
,
V

ε

))
.

Here and below,O(·) stands for universal multiplicative constants. In comparison, previous algorithms
for the unit-cost model, such as the ones studied in [14], would cost here at least Ω(W log(K/δ)/ε2)
where K is the number of arms, assuming bounded rewards. Qualitatively, removing the dependence
on K is of significance. MAB-PPR obtains a quantitatively significant improvement when K is large
and V ≤ O(1/ε).
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Algorithm 1 MAB-PPR: ε-Best-Arm-Identification with Pay-Per-Reward
Input: ε, δ ∈ (0, 1), V ≥ 1, K ∈ N; Universal constants Cq, C ′q, C1, C2, C3, Nfinal > 0; ρ, θ ∈

(0, 1).
Output: r ∈ [K]

1: t← 1, S1 ← [K], ε1 ← (1− ρ)ε/2, δ1 ← δ/2.
2: while |St| > Nfinal do
3: B First batch of pulls:
4: Set q1 ← Cq log(C ′q/δt) and `t ← C1 max(1/ε2t , V/εt); Pull the arms in St for q1`t times.
5: For each i ∈ St, use the pulls of arm i to calculate ŵi,t, the (q1, `t)-MoM estimate of wi.
6: Set {jl}l∈[|St|] to be an ordering of St such that ŵjl,t ≤ ŵjl+1,t for all l ∈ [|St| − 1].
7: B Second batch of pulls:
8: Set q2 ← 9

2 log(12/δt), `(2) ← C2V/ε; Pull the arms in St for q2`(2) times.
9: For i ∈ St, let {xj,li }j∈[q2],l∈[`(2)] be the i.i.d. copies of Xi obtained in line 8.

10: for l ∈ [|St|] do
11: Define Al := {j1, . . . , jl}.
12: Use {

∑
i∈Al

xj,li }j∈[q2],l∈[`(2)] to calculate W̃Al,t, the (q2, `(2))-MoM estimate of WAl
.

13: end for
14: B Decide which arms to remove:
15: If W̃St,t ≤ ε/4, return some r ∈ St and terminate.
16: Find the largest integer Nt such that W̃ANt ,t

/W̃St,t ≤ θ.
17: Set St+1 ← St \ANt

, εt+1 ← ρεt, δt+1 ← δt/2, t← t+ 1.
18: end while
19: B Final round (|St| ≤ Nfinal):
20: Set q3 ← 9

2 log(Nfinal/δt), `(3) ← C3/ε
2; Pull the arms in St for q3`(3) times.

21: For i ∈ St, use the pulls of arm i to calculate ŵi,t, the (q3, `(3))-MoM estimate of wi.
22: return some r ∈ argmaxi∈St

ŵi,t.

4 The MAB-PPR algorithm

The MAB-PPR algorithm is listed in Alg. 1. The main ideas in MAB-PPR are described below. We
use several universal constants in Alg. 1. In the analysis below, we show that there exist values for
these constants such that the guarantees of MAB-PPR hold. For readability, we do not explicitly
round up non-integer sample sizes. Such rounding would not affect our final cost upper bound.

A central challenge in designing MAB-PPR is avoiding a union bound on the number of arms. In
[14], where arm pulls have unit cost, the median-elimination algorithm was proposed for this purpose.
This algorithm removes half of the arms from the candidate set in each round. In our case, because of
the different cost model, it is necessary to remove a constant fraction of the total weight, regardless
of the number of arms. To achieve this, MAB-PPR uses two batches of arm pulls in each round.
The universal constants Cq, C ′q, C1, C2 are used for calculating the required numbers of arm pulls
in each batch so that subsequent estimates hold. The first batch of pulls (line 4) is used to estimate
the weight of each arm with the MoM estimator (line 5). The arms are then ordered according to
their estimated weight. The second batch of pulls (line 8) is used to decide how many arms to remove
from the bottom of this ordering, to make sure that the removed fraction of the total weight is within a
certain range. This is done by estimating the total weight of each possible subset of arms, again using
MoM (line 12). Here, it is important to note that taking the sum of MoM estimates is not equivalent
to taking the MoM estimate of the sum, thus these sums are estimated directly. The selected number
of arms is then removed from the bottom of the ordering (line 16). The threshold θ is used to upper
bound the empirical fraction of the removed arms. After each round, the values of εt and δt are
updated, where the constant ρ controls the rate of decay for εt. MAB-PPR terminates in one of
two ways: if at some point, the estimated total weight of the remaining arms is small, then some
remaining arm is returned (line 15). Otherwise, when the number of remaining arms is smaller than
the constant Nfinal, all their weights are directly estimated (where the constant C3 is used to set the
number of pulls), and the arm with the maximal estimated weight is returned (line 22).
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Supporting an unbounded number of arms. For simplicity of presentation, the notations and
Alg. 1 are given for a finite and known number of arms K. Nonetheless, MAB-PPR can be used
even if the number of arms is unbounded or infinite. This is possible if there is a way to pull all
arms together in finite time, and get a finite result listing all the non-zero instantaneous rewards. For
instance, in the search-query example, pulling all arms together can be done by placing an ad and
linking it to all search queries, and then recording which search queries actually came up and resulted
in an ad-click. Assuming that W ≡

∑
i wi <∞, Alg. 1 can then support an unbounded number of

arms as follows. In line 1, S1 should be (implicitly) set to the entire set of available arms. In line 6
of the first round, only arms with a non-zero reward in any of the pulls of the first batch need to be
explicitly ordered. The other arms can be implicitly placed at the bottom of the ordering. After the
second batch, let l0 be the smallest index such that arm jl0 got a positive reward at least once. Then
for all l < l0, W̃Al,1 can be (implicitly) set to zero. Clearly, the value of N1, set in line 16 of the first
round, satisfies N1 ≥ l0. Thus, in the first round, any arm that got no reward in any of the pulls is
removed in line 17. As a result, the set of arms S2 set for the second round is finite and known, and
so from this point on, the algorithm can proceed as listed.

5 Analysis

In this section we prove Theorem 3.1, restated below in more detail as Theorem 5.6. Recall that St is
the set of candidate arms in round t. Denote by Wt := WSt

the total weight of the arms in St. As
in Alg. 1, the estimations made by MAB-PPR are denoted by {ŵi,t}i∈St

and {W̃Al,t}l∈[|St|]. We
omit the subscript t when it is clear from context. Denote W̃t := W̃St,t. We say that a round t of
MAB-PPR is standard if |St| > Nfinal and Wt ≥ ε/8. We first show that with a high probability, the
only non-standard round (if at all) is the last round. Define the following event:

E0(t) := {(Wt < ε/8⇒ W̃t ≤ ε/4) and (Wt ≥ ε/2⇒ W̃t ≥ ε/4)}.

Lemma 5.1. For a large enough constant C2, for any round t with |St| > Nfinal, E0(t) holds with a
probability at least 1− δt/4.

Proof. If |St| > Nfinal then line 8 is invoked, and W̃t is a (q2, `(2))-MoM estimate of Wt. By
Assumption 2.2, σ2

St
≤ VWt. Hence, by Lemma 2.3, since q2 ≥ 9

2 log(4/δt), with a probability at
least 1 − δt/4, |Wt − W̃t| ≤

√
6VWt/`(2). We have `(2) = C2V/ε. By setting C2 ≥ 48, we get

|Wt − W̃t| ≤
√
Wtε/8. If Wt < ε/8, it follows that W̃t ≤ Wt + ε/8 ≤ ε/4, which shows that the

first part of E0(t) holds. If Wt ≥ ε/2, then W̃t ≥Wt −
√
Wtε/8 ≥Wt/2 ≥ ε/4, which shows that

the second part of E0(t) holds.

If E0(t) holds and Wt < ε/8, then in round t the condition in line 15 is invoked, leading to the
termination of MAB-PPR. The other option for a round t to be non-standard is if |St| ≤ Nfinal. This
case also leads to the termination of the algorithm. Therefore, if E0(t) holds for all rounds, then all
rounds except for (perhaps) the last one are standard. We use this observation in the proofs below.

We prove the correctness of MAB-PPR by guaranteeing that with a high probability, an ε-best arm
remains in the set St throughout the algorithm. We upper bound the cost of MAB-PPR by showing
that under the same events, the total weight of arms is reduced in every round by at least a certain
fraction. This general analysis structure is also used for the median-elimination algorithm in [14],
where half of the arms are removed in each round. However, once weights are used instead of
numbers of arms, new techniques are required, and the estimation scheme, as well as the analysis,
become more involved.

First, we define several events. We later prove that they all hold together with a high probability.
Let i∗t ∈ argmaxi∈St

wi be an arm with the largest weight in St. Let w∗t := wi∗t , and ŵ∗t := ŵi∗t ,t.
Note that i∗ := i∗1 is the optimal arm and its weight is w∗ := w∗1 . For any arm j ∈ St, we say
that j is a t-bad arm if wj < w∗t − εt, where εt is as defined in Alg. 1. We also define the set
Mt := {i ∈ St | i is t-bad and ŵi,t ≥ ŵ∗t }.
We define three constants: φL, φM , φU ∈ (0, 1) (standing for “Lower”, “Middle” and “Upper”), such
that φL < φM < 1 − φU . These constants are used to analyze the fraction of removed arms in
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each round, as follows: φL is a lower-bound on the fraction of the arm weight which is guaranteed
to be removed in each round. φU is an upper bound on the fraction of the arm weight in bad arms.
φM is used to define a set of arms guaranteed to be removed in each round. Denote the set of arms
that appear to be the worst in round t according to the estimates {ŵi,t} by Lt = {j1, . . . , jkt},
where {jl}l∈[|St| is the ordering defined in line 6 of round t, and kt is the largest integer such that∑

i∈Lt
wi ≤ φMWt. We define the following events for each round t, where φL, φU ∈ (0, 1) are

constants such that :

• E1(t) := {WMt
< φUWt},

• E2(t) := {WLt
≥ φLWt or |St \ Lt| ≤ Nfinal},

• E3(t) := {(St+1 \Mt 6= ∅) ∧ (St+1 ∩ Lt = ∅).

We omit the argument (t) on events when it is clear from context. The following lemmas state that
in a standard round t, all of these events hold with a high probability, as long as the constants are
selected appropriately. Their proofs are provided after the statement and proof of Theorem 5.6.

Lemma 5.2. For any φU ∈ (0, 1) and sufficiently large constants Cq, C ′q, C1 > 0, we have that for
any standard round t, with a probability at least 1− δt/4, E1(t) holds.

Lemma 5.3. For any φL, φM , φU such that 0 < φL < φM < 1 − φU < 1, there are sufficiently
large constants Cq, C ′q, C1, Nfinal > 0 such that for any standard round t, with a probability at least
1− δt/4, E2(t) holds.

Lemma 5.4. For any φL, φM , φU such that 0 < φL < φM < 1− φU < 1, there is some θ ∈ (0, 1)
such that for a sufficiently large C2 > 0, in any standard round t, with a probability at least 1− δt/4,
E1(t) implies E3(t).

The following lemma shows that these events guarantee that a good arm always remains in the
candidate set, and that the reduction of the candidate set in each round is as required.

Lemma 5.5. For any standard round t in which E1, E2, E3 all hold, we have, with a probability at
least 1− δt, that (1) w∗t+1 ≥ w∗t − εt, and (2) Wt+1 ≤ (1− φL)Wt or |St+1| ≤ Nfinal.

Proof. To prove the first part, observe that by E3, St+1 \Mt 6= ∅. Let j ∈ argmaxj∈St+1\Mt
ŵj,t.

By the definition of St+1 in Alg. 1, it includes the arms in St with the largest estimated weights. Thus,
we also have j ∈ argmaxj∈St\Mt

ŵj,t. Therefore, since i∗t ∈ St \Mt, it follows that ŵj,t ≥ ŵ∗t .
Thus, since j /∈ Mt, it follows j is not t-bad, so wj ≥ w∗t − εt. Combined with w∗t+1 ≥ wj , this
completes the proof of the first part. For the second part, note that St+1 ⊆ St and Lt ⊆ St. By
E3, St+1 ∩ Lt = ∅. Therefore, Wt+1 +WLt

≤ Wt. If |St+1| > Nfinal then by E2, WLt
≥ φLWt.

Therefore, Wt+1 ≤Wt(1− φL).

Combining the lemmas above, the main result is shown in the following theorem.

Theorem 5.6. For any setting of the constants except for C3 and ρ that satisfies the lemmas above,
there is setting of C3 > 0 and ρ ∈ (0, 1) such that with a probability at least 1 − δ, MAB-PPR
terminates and returns an ε-best arm, and its cost is

O(W · log(1/δ) ·max(
1

ε2
,
V

ε
)).

Proof. Condition below on E0 occurring in all rounds, and on E1, E2, E3 occurring in all standard
rounds. By Lemmas 5.1, 5.2, 5.3, and 5.4, and the fact that

∑∞
t=1 δt ≤ δ, this condition holds

with a probability at least 1 − δ. By Lemma 5.5, in all standard rounds Wt ≤ (1 − φL)t−1W .
From E0(t) it follows that in a round with Wt ≤ ε/8, we have W̃t ≤ ε/4, which guarantees that
MAB-PPR terminates in line 15. Therefore, MAB-PPR terminates at the latest when t satisfies
(1−φL)t−1W ≤ ε/8. Let T be the last round of the run. By Lemma 5.5, in standard rounds we have
w∗t+1 ≥ w∗t − εt. Thus,

w∗T ≥ w∗ −
T−1∑
t=1

εt = w∗ − (1− ρ)

T−1∑
t=1

ρt−1ε/2 ≥ w∗ − ε/2. (1)
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Consider the two possible ways of terminating: if the algorithm terminates in line 15, then W̃T ≤ ε/4.
By E0(t), this means that WT ≤ ε/2, thus wr ≥ w∗T − ε/2. The other way of terminating is
when |ST | ≤ Nfinal. In this case, for all i ∈ ST , ŵi,T is a (q3, `(3))-MoM estimate of wi, where
q3 ≥ 9

2 log(Nfinal/δT ) and `(3) = C3/ε
2. Set C3 ≥ 96. By Lemma 2.3 and a union bound on

Nfinal arms, it follows that with a probability at least 1− δT , ∀i ∈ ST , |wi − ŵi,T | ≤
√

6σ2
i /`(3) ≤√

6/`(3) ≤ ε/4, where the second inequality follows from Assumption 2.1. The returned arm in this
case is r ∈ argmaxi∈ST

ŵi,T , thus wr ≥ ŵr,T − ε/4 ≥ ŵ∗T − ε/4 ≥ w∗T − ε/2. Therefore, in both
cases we have wr ≥ w∗T − ε/2. Combined with Eq. (1), this proves that wr ≥ w∗ − ε.
The cost of any round of MAB-PPR is upper-bounded byWt(q1`t+q2`(2)+q+3`(3)). Therefore, the
total cost is at most W

∑T
t=1(1− φL)t−1(q1`t + q2`(2) + q3`(3)). We have, for constants C,C ′ > 0

(that depend on the constants used in Alg. 1), that q1`t + q2`(2) + q3`(3) ≤ C log(C
′

δt
) ·max( 1

ε2t
, Vεt ),

where δt = δ/2t and εt = 1
2 (1− ρ)ρt−1ε. Therefore, the total cost is upper bounded by

W

T∑
t=1

(1− φL)t−1 · C log(
C ′

δt
) max(

1

ε2t
,
V

εt
) ≤ C ′′ ·W log(C ′′′/δ) max(

1

ε2
,
V

ε
)

T−1∑
t=1

t(1− φL)t−1

(ρ2)t−1
,

For constants C ′′, C ′′′ > 0. Setting ρ ∈ (
√

1− φL, 1), the sum on t is upper-bounded by a constant,
giving the required upper bound on the cost.

We now prove lemmas that the events E1, E2, E3 hold with a high probability. We start with
Lemma 5.2, which shows this for E1(t), which states that WMt

< φUWt.

Proof of Lemma 5.2. Fix a round t. Define the event E4 := {ŵ∗t ≥ w∗t − εt/2}. Setting Cq ≥ 9
2 ,

C ′q ≥ 8 and C1 ≥ 24, we have q1 ≥ 9
2 log(8/δt) and `t ≥ 24/ε2t . By Assumption 2.1, σ2

i∗t
≤ 1.

Hence, by Lemma 2.3, with a probability 1− δt/8, |wt − ŵ∗t | ≤
√

6/`t ≤ εt/2, hence E4 holds.

Let i ∈ St be a t-bad arm. Let ŵji for j ∈ [q1] be the j’th mean estimate of wi used to get the estimate
ŵi,t in line 5. Let α1 ∈ (1 − φU

2 , 1). Set α2 = 1 − 1−φU/2
α1

, and set α3 ∈ (0, α2(1 − α1)). If E4

hold, then since i is t-bad, ŵji ≥ ŵ∗t implies ŵji ≥ ŵ∗t ≥ wi + εt/2. Denote Pt[·] := P[· | St]. Then,

Pt[ŵji ≥ ŵ
∗
t | E4] ≤ Pt[ŵji ≥ wi + εt/2]/Pt[E4] ≤ 2Pt[ŵji ≥ wi + εt/2] ≤ 2

`t(εt/2)2
.

The last inequality follows from Chebychev’s inequality, since σ2
i ≤ 1. Setting C1 ≥ 8

α3
, we have

`t ≥ 8
α3ε2t

, hence Pt[ŵji ≥ ŵ∗t | E4] ≤ α3. Denote M j
t := {i | i is t-bad and ŵji ≥ ŵ∗t }. We

conclude that
Et[WMj

t
| E4] =

∑
i∈St

wi · Pt[i ∈M j
t | E4] ≤

∑
i∈St

wi · Pt[ŵji ≥ ŵ
∗
t | E4] ≤ α3Wt.

By Markov’s inequality, it follows that Pt[WMj
t
≥ α2Wt | E4] ≤ α3Wt

α2Wt
< 1 − α1. Define

the event E5 := { 1
q1

∑
j I[WMj

t
≥ α2Wt] < 1 − α1}. We have q1 ≥ Cq log(C ′q/δt). Setting

Cq ≥ 1/(2(1−α1−α3/α2)2) and C ′q ≥ 8, we have by Hoeffding’s inequality and the independence
of {M j

i } for j ∈ [q1] that Pt[E5 | E4] ≥ 1 − δt/8. Therefore, combined with Pt[E4] ≥ 1 − δt/8,
we get that for any St, Pt[E5] ≥ 1− δ/4. Under E5, we have

1

q1

∑
j

WMj
t
< α2α1Wt + (1− α1)Wt = (α2α1 + 1− α1)Wt = φUWt/2. (2)

Where the last equality follows from the definition of α2. On the other hand, since ŵi,t is the median
of {ŵji }j∈[q1], and i ∈Mt implies ŵi,t ≥ ŵ∗t , we have

WMt =
∑
i∈St

wi · I[i ∈Mt] ≤
∑
i∈St

wi · I[|{j | i ∈M j
t }| ≥ q1/2]

≤ 2

q1

∑
i∈St

wi
∑
j∈[q1]

I[i ∈M j
t ] =

2

q1

∑
j∈[q1]

∑
i∈St

wi · I[i ∈M j
t ] =

2

q1

∑
j∈[q1]

WMj
t
.

Combined with Eq. (2), we get that with a probability of 1− δt/4, WMt
< φUWt.

7



We now prove Lemma 5.3, which states that with a probability at least 1 − δt/4, E2(t) holds in a
standard round, i.e., WLt ≥ φLWt or |St \ Lt| ≤ Nfinal. In this proof we use the following lemma,
proved in the supplementary material (Appendix C).
Lemma 5.7. Let Y1, . . . , Yz be random variables with means µ1, . . . , µz . Let Ȳ :=

∑
i∈[z] Yi,

µ :=
∑
i∈[z] µi = E[Ȳ ]. Let σ2 := Var(Ȳ ) < ∞. For i ∈ [z], let µ̂i be the (q, `)-MoM estimate

of µi based on q` i.i.d. draws of copies of Yi. Then for any γ > 0, with a probability at least

1− exp(−q/18), |{i ∈ [z] | µ̂i ≥ γµ}| ≤ 4
γ (1 +

√
6σ2

µ2` ).

Proof of Lemma 5.3. We will assume that WLt
< φLWt and conclude the required upper bound on

|St \ Lt| with a high probability. Let β := φM − φL. Let ν ∈ (0, β), and set α := 1
2 (β − ν)/

√
β.

Let j := jkt+1, where kt is given in the definition of Lt and {jl} is the ordering set in line 6 in round
t. By the definition of Lt, WLt

+ wj > φMWt. By our assumption, WLt
< φLWt. Therefore,

wj > (φM − φL)Wt = βWt. Define J = {i ∈ St | wi ≥ βWt}. We have |J | ≤ 1/β.

Set Cq ≥ 9
2 and C ′q ≥ 8/β, so that q1 ≥ 9

2 log((8/β)/δt). Recall that σ2
i ≤ wi by Assumption 2.1.

Therefore, by Lemma 2.3 and a union bound, with a probability at least 1− δt/8, ∀i ∈ J, |wi− ŵi| ≤√
6wi/`t. Setting C1 ≥ 6/α2, it follows that `t ≥ 6/(α2εt). We have εt ≤ ε/2 for all t. In addition,

since t is a standard round, ε/8 ≤ Wt. Therefore, for i ∈ J , εt ≤ 4Wt ≤ 4wi/β. It follows that
with a probability at least 1 − δt/8, ∀i ∈ J, |wi − ŵi| ≤ (2α/

√
β)wi = (1 − ν/β)wi, where the

equality follows from the definition of α. Hence ŵi ≥ (ν/β) · wi ≥ νWt. In particular, this holds
for j = jkt+1 as set above. Condition below on this event.

By the definition of Lt and j, for all i ∈ St \ Lt, ŵi ≥ ŵj . Therefore, by the event above, for all
i ∈ St \ Lt, ŵi ≥ νWt. Hence, |St \ Lt| ≤ |{i ∈ St | ŵi ≥ νWt}|. To bound the RHS, recall
that σ2

St
≤ VWt by Assumption 2.2. Thus, applying Lemma 5.7, we have that by setting Cq ≥ 18,

w.p. 1 − δt/8, |{i ∈ St | ŵi ≥ νWt}| ≤ 4
ν (1 +

√
6V
Wt`t

). We have `t ≥ C1V/εt ≥ C1V/(4Wt).
Therefore,

|{i ∈ St | ŵi ≥ νWt}| ≤
4

ν
(1 +

√
24/C1) =: Nfinal. (3)

By a union bound, with a probability 1− δt/4, the event above and Eq. (3) hold simultaneously, in
which case WLt

< φLWt implies |St \ Lt| ≤ Nfinal.

Lastly, we prove Lemma 5.4, which states that in a standard round t, with a probability at least
1− δt/4, E1(t) implies E3(t), i.e., St+1 \Mt 6= ∅ and St+1 ∩ Lt = ∅.

Proof of Lemma 5.4. Fix a round t. Let Al := {j1, . . . , jl}, where {jl} is the ordering set in line 6,
and let W̃Al

:= W̃Al,t be the estimate of WAl
calculated in line 8 of round t. By the assumption of

the lemma, φM < 1− φU . Let R ∈ (0, 1− φU ) be the solution to φM+R
√
φM

1−R − 1−φU−R
1+R = 0. The

solution is in this range, since since for R = 0, the LHS is equal to φM − (1 − φU ) < 0, and for
R = 1− φU , the LHS is positive. Set θ := 1−φU−R

1+R .

Recall that q2 = 9
2 log(12/δt). By setting C2 ≥ 48/R2, we get `(2) ≥ 48V/(R2ε). Therefore, by

Lemma 2.3 and Assumption 2.2, for any fixed l the following holds with a probability 1− δt/12:

|W̃Al
−WAl

| ≤
√

6VWAl
/`(2) ≤

√
R2WAl

ε/8 ≤ R
√
WAl

Wt. (4)

The last inequality follows since t is a standard round, hence Wt ≥ ε/8. Let nt be the smallest
integer such that WAnt

≥Wt −WMt . With a probability 1− δt/4, Eq. (4) holds simultaneously for
l = nt, l = kt (so Al ≡ Lt) and l = |St| (so Al ≡ St). Condition below on this combined event. It
follows from the definition of Lt that

W̃Lt
≤WLt

+R
√
WLt

Wt ≤ (φM +R
√
φM )Wt.

Suppose that E1(t) holds, so WMt
< φUWt. By definition of nt, WAnt

> (1− φU )Wt. Therefore,

W̃Ant
≥WAnt

−R
√
WAnt

Wt > (1− φU )Wt −RWt = (1− φU −R)Wt.
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Lastly, from Eq. (4) for l = |St|, we get Wt(1 − R) ≤ W̃t ≤ Wt(1 + R). Now, MAB-PPR sets
St+1 = St \ANt , where Nt is the largest number that satisfies W̃ANt

/W̃t ≤ θ. From the inequalities

above, we have
W̃Ant

W̃t
> 1−φU−R

1+R = θ and W̃Lt

W̃t
≤ φM+R

√
φM

1−R = θ. Hence, kt ≤ Nt < nt.
From kt ≤ Nt, we have St+1 ∩ Lt = ∅. From Nt < nt, we have St+1 ≡ St \ ANt ⊇ St \ Ant−1.
ThereforeWt+1 ≥Wt−WAnt−1 . By the definition of nt, we haveWAnt−1 < Wt−WMt . Therefore,
Wt+1 ≥WMt . It follows that St+1 \Mt 6= ∅. Thus, E1(t) implies E3(t).

Having proved Lemma 5.2,Lemma 5.3, and Lemma 5.4, this finalizes the proof of Theorem 5.6.

6 Conclusion

In this work we showed that it is possible to identify an ε-best arm in a pay-per-reward multi-armed-
bandit setting at a cost that does not depend on the number of arms, and depends only linearly on the
total expected reward. In future work, we plan to study instance-specific bounds for this setting.
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