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Abstract

Stochastic sparse linear bandits offer a practical model for high-dimensional online
decision-making problems and have a rich information-regret structure. In this
work we explore the use of information-directed sampling (IDS), which naturally
balances the information-regret trade-off. We develop a class of information-
theoretic Bayesian regret bounds that nearly match existing lower bounds on a
variety of problem instances, demonstrating the adaptivity of IDS. To efficiently
implement sparse IDS, we propose an empirical Bayesian approach for sparse
posterior sampling using a spike-and-slab Gaussian-Laplace prior. Numerical
results demonstrate significant regret reductions by sparse IDS relative to several
baselines.

1 Introduction

Standard linear bandits associate each action with a feature vector and assume the mean reward is
the inner product between the feature vector and an unknown parameter vector [Auer, 2002, Dani
et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Chu et al., 2011, Abbasi-Yadkori et al., 2011].
Sparse linear bandits generalize linear bandits by assuming the unknown parameter vector is sparse
[Abbasi-Yadkori et al., 2012, Carpentier and Munos, 2012, Hao et al., 2020b] and is of great practical
significance for modeling high-dimensional online decision-making problems [Bastani and Bayati,
2020].

Lattimore and Szepesvári [2020, §24.3] established a Ω(
√
sdn) regret lower bound for the data-rich

regime, where n is the horizon, d is the feature dimension, s is the sparsity and data-rich regime
refers to the horizon n ≥ dα for some α > 0. This means polynomial dependence on d is generally
not avoidable without additional assumptions. However, this bound hides much of the rich structure
of sparse linear bandits by a crude maximisation over all environments.

When the action set admits a well-conditioned exploration distribution, Hao et al. [2020b] discovered
the information-regret trade-off phenomenon by establishing an Θ(poly(s)n2/3) minimax rate for
the data-poor regime. An interpretation for this optimal rate is that the agent needs to acquire
enough information for fast sparse learning by pulling informative actions that even have high regret.
Explore-then-commit algorithm can achieve this rate for the data-poor regime but is sub-optimal
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in the data-rich regime. Therefore, our goal is to develop an efficient algorithm that can adapt to
different information-regret structures for sparse linear bandits.

Contributions Our contribution is three-fold:

• We prove that optimism-based algorithms fail to optimally address the information-regret
trade-off in sparse linear bandits, which results in a sub-optimal regret bound.

• We provide the first analysis using information theory for sparse linear bandits and derive a
class of nearly optimal Bayesian regret bounds for IDS that can adapt to information-regret
structures.

• To approximate the information ratio, we develop an empirical Bayesian approach for
sparse posterior sampling using spike-and-slab Gaussian-Laplace prior. Through several
experiments, we justify the great empirical performance of sparse IDS with an efficient
implementation.

2 Preliminary

We first introduce the basic setup of stochastic sparse linear bandits. The agent receives a compact
action set A ⊆ Rd in the beginning where |A| = K. At each round t, the agent chooses an action
At ∈ A and receives a reward Yt = 〈At, θ∗〉 + ηt, where (ηt)

n
t=1 is a sequence of independent

standard Gaussian random variables and θ∗ ∈ Rd is the true parameter unknown to the agent. We
make the mild boundedness assumption that for all a ∈ A, ‖a‖∞ ≤ 1. The notion of sparsity can be
defined through the parameter space Θ:

Θ =

θ ∈ Rd
∣∣∣∣∣
d∑
j=1

1{θj 6= 0} ≤ s, ‖θ‖2 ≤ 1

 .

We assume s is known and it can be relaxed by putting a prior on it. We consider the Bayesian
setting where θ∗ is a random variable taking values in Θ and denote ρ as the prior distribution.
The optimal action is x∗ = argmaxa∈A E[〈a, θ∗〉|θ∗]. The agent chooses At based on the history
Ft = (A1, Y1, . . . , At−1, Yt−1). Let D(A) be the space of probability measures over A. A policy
π = (πt)t∈N is a sequence of deterministic functions where πt(Ft) specifies a probability distribution
overA. The information-theoretic Bayesian regret of a policy π [Russo and Van Roy, 2014] is defined
as

BR(n;π) = E

[
n∑
t=1

〈x∗, θ∗〉 −
n∑
t=1

Yt

]
,

where the expectation is over the interaction sequence induced by the agent and environment and the
prior distribution over θ∗.

Notation Denote Id as the d × d identity matrix. Let [n] = {1, 2, . . . , n}. For a vector x and
positive semidefinite matrix A, we let ‖x‖A =

√
x>Ax be the weighted `2-norm and σmin(A) be

the minimum eigenvalue of A. The relation x & y means that x is greater or equal to y up to some
universial constant and Õ(·) hides modest logarithmic factors and universal constant. The cardinality
of a setA is denoted by |A|. Given a measure P and jointly distributed random variables X and Y we
let PX denote the law ofX and we let PX|Y be the conditional law ofX given Y : PX|Y (·) = P(X ∈
·|Y ). The mutual information between X and Y is I(X;Y ) = E[DKL(PX|Y ||PX)] where DKL is
the relative entropy. We write Pt(·) = P(·|Ft) as the posterior measure where P is the probability
measure over θ and the history and Et(·) = E(·|Ft). Denote It(X;Y ) = Et[DKL(Pt,X|Y ||Pt,X)].

3 Related work

Sparse linear bandits Abbasi-Yadkori et al. [2012] proposed an inefficient online-to-confidence-
set conversion approach that achieves an Õ(

√
sdn) upper bound for an arbitrary action set. Lattimore
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Table 1: Comparisons with existing results. APS11, LCS15, HLW20 refer to Abbasi-Yadkori et al.
[2012], Lattimore et al. [2015], Hao et al. [2020b] accordingly. Exploratory action set is defined
in Definition 5.2 and K is the number of actions. The last lower bound is developed in Hao et al.
[2020b].

Action set Algorithm Type Rate
APS11 arbitrary online-to-confidence freq Õ(

√
sdn)

LCS15 hypercube elimination freq Õ(s
√
n)

HLW20 exploratory explore-then-commit freq Õ(s2/3n2/3)

This paper arbitrary sparse IDS Bayesian Õ(min(
√
sdn,

√
dn log(K)))

This paper arbitrary sparse TS Bayesian Õ(min(
√
sdn,

√
dn log(K)))

This paper exploratory sparse IDS Bayesian Õ(min(sn2/3,
√
sdn)

Lower bound arbitrary NA minimax Ω(
√
sdn)

Lower bound exploratory NA minimax Ω(min(s1/3n2/3,
√
dn))

et al. [2015] developed a selective explore-then-commit algorithm that only works when the action
set is exactly the binary hypercube and derived an optimal O(s

√
n) upper bound. Hao et al. [2020b]

introduced the notion of an exploratory action set and proved a Θ(poly(s)n2/3) minimax rate for the
data-poor regime using an explore-then-commit algorithm. Hao et al. [2021] extended this concept to
a MDP setting. Carpentier and Munos [2012] considered a special case where the action set is the
unit sphere and the noise is vector-valued so that the noise becomes smaller as the dimension grows.
We summarize the comparison of existing results with our work in Table 3.

Sparse linear contextual bandits It recently became popular to study the contextual setting, where
the action set changes from round to round. These results can not be reduced to our setting since
they rely on either careful assumptions on the context distribution [Bastani and Bayati, 2020, Wang
et al., 2018, Kim and Paik, 2019, Wang et al., 2020, Ren and Zhou, 2020, Oh et al., 2020] such that
classical high-dimensional statistics can be used, or have polynomial dependency on the number of
actions [Agarwal et al., 2014, Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2020].

Information-directed sampling Russo and Van Roy [2018] introduced IDS and derived Bayesian
regret bounds for multi-armed bandits, linear bandits and combinatorial bandits. Liu et al. [2018]
studied IDS for bandits with graph-feedback. Kirschner and Krause [2018], Kirschner et al. [2020a]
investigated the use of IDS for bandits with heteroscedastic noise and partial monitoring. Kirschner
et al. [2020b] proved the asymptotic optimality of frequentist IDS for linear bandits.

Information-theoretic analysis Russo and Van Roy [2014] introduced an information-theoretic
analysis of Thompson sampling (TS) and Bubeck and Sellke [2020] strengthened the result with a
first-order Bayesian regret analysis. Dong and Roy [2018], Dong et al. [2019] extended the analysis
to infinite-many actions and logistic bandits. Lattimore and Szepesvári [2019] explored the use of
information-theoretic analysis for partial monitoring. Lu and Van Roy [2019] generalized the analysis
to reinforcement learning.

Bayesian sparse linear regression In the Bayesian framework, spike-and-slab methods are com-
monly used as probabilistic tools for sparse linear regression but most of prior works focus on variable
selection and parameter estimation rather than uncertainty quantification [Mitchell and Beauchamp,
1988, George and McCulloch, 1993, Ročková and George, 2018]. Bai et al. [2020] provided a
comprehensive overview.

4 Does the optimism optimally balance information and regret?

We demonstrate the necessity of balancing the trade-off between information and regret through a
simple sparse linear bandit instance. We give an example where the optimal regret is only possible
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by playing actions that are known to be sub-optimal. This phenomenon has disturbing implications
for policies based on the principle of optimism, which is that they can never be minimax optimal in
certain regime.

Illustrative example Consider a problem instance whereA = I ∪U is the union of an informative
action set I and an uninformative action set U :

• I is a subset of the hypercube that has three properties. First, |I| = O(s log(ed/s)). Second,
the last coordinate of actions in I is always -1. Third, the empirical covariance of the uniform
distribution over I has a restricted minimum eigenvalue (Definition A.1) at least 1/4. We
prove such I does exist in Appendix A.1 through a probabilistic argument.

• U = {x ∈ Rd|xj ∈ {−1, 0, 1} for j ∈ [d− 1], ‖x‖1 = s− 1, xd = 0}.

The true parameter θ∗ = (ε, . . . , ε, 0, . . . , 0,−1), where ε > 0 is a small constant.

Information-regret structure Sampling an action uniformly at random from I ensures the covari-
ance matrix is well-conditioned so that sparse learning such as Lasso [Tibshirani, 1996] can be used
for learning θ∗ faster than ordinary least squares. This means pulling actions from I provides more
information to infer θ∗ than from U . On the other hand, actions from I lead to high regret due to the
last coordinate -1. As a consequence, Hao et al. [2020b] has proven that the minimax regret for this
problem is Θ(poly(s)n2/3) when the horizon is smaller than the ambient dimension.

Sub-optimality of optimism-based algorithms We argue the optimism principle does not take this
subtle trade-off into consideration and yields sub-optimal regret in the data-poor regime. In general,
optimism-based algorithms chooseAt = argmaxa∈Amaxθ̃∈Ct〈a, θ̃〉, where Ct ⊆ Rd is a confidence
set that contains the true θ∗ with high probability. We assume that there exists a constant c > 0
such that Ct ⊆ {θ : (θ̂t − θ)>Vt(θ̂t − θ) ≤ c

√
s log(n)}, where Vt =

∑t
s=1AsA

>
s and θ̂t is some

sparsity-aware estimator. Such confidence set can be constructed through an online-to-confidence set
conversion approach [Abbasi-Yadkori et al., 2012]. Define Rθ(n;π) = E[

∑n
t=1〈x∗, θ〉 −

∑n
t=1 Yt]

for a fixed θ.

Claim 4.1. Let πopt be such an optimism-based algorithm. There exists a sparse linear bandit instance
characterized by θ such that for the data-poor regime, we have

Rθ(n;πopt) & n/(log(n)s log(ed/s)) .

The proof is deferred to Appendix A.1. The reason is that optimism-based algorithms do not choose
actions for which they have collected enough statistics to prove these actions are suboptimal, but
in the sparse linear setting it can be worth playing these actions when they are informative about
other actions for which the statistics are not yet so clear. This phenomenon has been observed before
in linear and structured bandits [Lattimore and Szepesvari, 2017, Combes et al., 2017, Hao et al.,
2020a].

5 Information-directed sampling

As shown by Hao et al. [2020b], although the explore-then-commit algorithm can achieve the minimax
optimal regret in the data-poor regime, it suffers sub-optimal regret in the data-rich regime. This
motivates us consider IDS.

5.1 Design principle of IDS

Unlike the optimism principle, IDS explicitly balances the amount of information it gains about the
optimal action and expected single-round regret through minimizing a notion of information ratio.
More formally, when playing action a, the information gain It(x∗;Yt,a) is the mutual information
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between the optimal action and the reward the agent receives for taking action a, and the expected
single-round regret is ∆t(a) := Et[〈x∗, θ∗〉 − 〈a, θ∗〉]. The information ratio is defined as

Ψt,λ(π) =
(∆>t π)λ

I>t π
, (5.1)

where we write ∆t ∈ R|A| and It ∈ R|A| as corresponding vectors. Then IDS takes the action
according to πt = argminπ∈D(A) Ψt,2(π).
Remark 5.1. The information ratio defined in Eq. (5.1) is a little more general than what Russo and
Van Roy [2018] introduced which specified λ = 2. As observed by Lattimore and György [2020],
the right value of λ depends on the dependence of the regret on the horizon.

5.2 Information-theoretic Bayesian regret bound

In this section, we derive a class of Bayesian regret upper bound for sparse IDS. We first define a
notion of exploratory action set.
Definition 5.2 (Exploratory action set). Let Cmin(A) = maxµ∈D(A) σmin(EA∼µ[AA>]). For an
action set A, if Cmin(A) ≥ 11, we say A is exploratory.

We say that A has sparse optimal actions if the optimal action is s-sparse almost surely with respect
to the prior. One can verify the action set of the hard instance developed in Hao et al. [2020b]2 is
exploratory and has sparse optimal actions since sampling uniformly from the corner of informative
action set shows that Cmin(A) ≥ 1 and the optimal actions always come from uninformative action
set, which is sparse.
Theorem 5.3 (Regret bound for sparse IDS). Suppose πIDS = (πt)t∈N where πt = argminπ Ψt,2(π).
Let ∆ = min(log(K), 2s log(Cdn1/2/s)) for some absolute constant C > 0. For an arbitrary action
set, the following regret bound holds

BR(n;πIDS) ≤
√

1

2
nd∆ .

When A is exploratory and has sparse optimal actions, the following regret bound holds

BR(n;πIDS) ≤ min

{√
1

2
nd∆,

s
2
3n

2
3 ∆

1
3

(2Cmin(A))
1
3

}
.

This theorem shows the great adaptivity of IDS for sparse linear bandits in the sense that a single
policy adapts to different information-regret structures. We summarize the regret bounds in a variety
of of different regimes in Table 5.2.
Remark 5.4. The explore-then-commit algorithm proposed by Hao et al. [2020b] for sparse linear
bandits has O(poly(s)n2/3) regret bound when the action set is exploratory and it is known that
this O(n2/3) rate is not improvable. Thus, it is sub-optimal for data-rich regime comparing with
Θ(
√
sdn) minimax rate. In contrast, IDS is nearly optimal in both regimes.

As a direct application of our analysis, we also include a novel Bayesian regret bound for sparse TS.
Corollary 5.5 (Regret bound for sparse TS). For an arbitrary action set, the following regret bound
holds for some absolute constant C > 0

BR(n;πTS) ≤
√

1

2
ndmin(log(K), 2s log(Cdn1/2/s)) .

Proof of Theorem 5.3. We prove our main result in three steps. All the proofs of technical lemmas
are deferred to the appendix.

1In the definition 1 is simply a convenient constant. More precisely, Cmin(A) is a problem-dependent
parameter of our regret bound.

2The hard instance is almost the same as the one in illustrative example except the informative action set is a
full hypercube.
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Table 2: Summary of regret bounds of IDS for different regimes. Data-rich regime refers to n &
d3∆/s4 and large K refers to K & d exp(s).

Arbitrary action set Exploratory (data-rich) Exploratory (data-poor)
Large K Õ(

√
nds) Õ(

√
nds) Õ(sn2/3)

Small K Õ(
√
nd log(K)) Õ(

√
nd log(K)) Õ(s2/3n2/3 log1/3(K))

Step 1: Generic Bayesian regret upper bound We define Ψ∗,λ ∈ R as the worse-case informa-
tion ratio such that for each t ∈ [n], Ψt,λ(πt) ≤ Ψ∗,λ almost surely.

Lemma 5.6. Suppose πIDS = (πt)t∈N where πt = argminπ Ψt,2(π). Then the following regret
bound holds

BR(n;πIDS) ≤ inf
λ≥2

21−2/λΨ
1/λ
∗,λ I(x∗;Fn+1)1/λn1−1/λ ,

where Fn+1 refers to the history.

This lemma demonstrates the adaptivity of a single IDS for different information ratios. The choice
of λ essentially trades off the information-ratio and the horizon.

Step 2: Bounding the worse-case information ratio We bound the worse-case information ratio
for different λ. It shows that for certain action sets, the worse-case information ratio with λ = 3
could be much smaller than the one with λ = 2.

Lemma 5.7. For an arbitrary action set, we have Ψ∗,2 ≤ d/2. For an exploratory action set that has
sparse optimal actions, we have Ψ∗,3 ≤ s2/(4Cmin(A)).

The bound of Ψ∗,2 essentially follows Russo and Van Roy [2014, Proposition 5] that bounds the
information ratio of IDS by TS. And Ψ∗,3 is bounded by the information ratio of a mixture policy
πmix
t = (1− γ)πTS

t + γµ where µ is an exploratory policy such that σmin(EA∼µ[AA>]) is a constant
and the mixture rate γ ≥ 0 is optimized to minimize the bound.

Step 3: Bounding the mutual information The mutual information I(x∗;Fn+1) quantifies the
cumulative information gain about the optimal action. Russo and Van Roy [2014, 2018] naively
bound this term by entropy H(x∗), which can be arbitrarily large or even infinite for some priors.
Instead, we bound this term by the mutual information between the true parameter and the history
through data-processing lemma.

Lemma 5.8. I(x∗;Fn+1) ≤ I(θ∗;Fn+1) ≤ min{log(K), 2s log(Cdn1/2/s)}.

Our proof is based on the metric entropy of the parameter space and square root KL-divergence
that is commonly used in information-theoretic lower bound analysis [Yang and Barron, 1999]. As
a by-product of our analysis, by setting s = d, our analysis recovers the Õ(d

√
n) Bayesian regret

bound for TS under linear bandits with infinitely many actions without using rate-distortion theory
[Dong and Roy, 2018]. Combining Lemmas 5.6-5.8 yields our conclusion.

6 Computational methods

In this section, we provide an efficient implementation of sparse IDS. The main challenge is to
generate posterior samples in a computationally efficient manner to approximate the information ratio.
Due to the lack of conjugate prior, we propose an empirical Bayesian approach for sparse sampling
with spike-and-slab priors.

6.1 An empirical Bayesian approach for sparse sampling

In the Bayesian framework, the golden standard for modeling θ∗ is to place spike-and-slab priors
[Mitchell and Beauchamp, 1988]. With a hierarchical structure over the parameter and model space,

6



vanilla spike-and-slab priors usually have the following form

ρ(θ|γ, σ2) =

d∏
j=1

[γjψ1(θj , σ) + (1− γj)ψ0(θj , σ)] , ρ(γ|β) =

d∏
j=1

βγj (1− β)1−γj , (6.1)

where γ = (γ1, . . . , γd)
> is an intermediate binary vector that indexs the 2d possible models and

β ∈ [0, 1] denotes a priori fraction of relevant variables among all the parameters. In particular,
ψ1(θ, σ) serves as a slab distribution to models relevant variables and ψ0(θ, σ) is a point mass at zero
that serves as a spike distribution to model irrelevant variables.
Remark 6.1. It is typical to assume β follows a Beta prior as β ∼ Beta(a, b) and variance σ2 follows
an inverse gamma prior ρ(σ2) = IG(ν/2, νλ/2) with ν = 1 and λ = 1 (Rořková and George [2014]).
For simplicity, we do not impose those additional layers of priors.

Prior specification. Although the prior in Eq. (6.1) is theoretically sound, exploring the full posterior
in high-dimensions over the entire model space using point-mass spike-and-slab priors can be
computationally prohibitive. Therefore, the spike distribution is usually relaxed as a small-scale
Gaussian distribution [Rořková and George, 2014] or Laplace distribution [Ročková and George,
2018]. Thus, we consider a spike-and-slab Gaussian-Laplace prior that inherits the property of the
Lasso [Tibshirani, 1996] for variable selection while the Gaussian component avoids the potential
over-shrinkage effect. Each component of the prior is specified as

ψ0(θ, σ) =
1

2σλ0
exp

(
− |θ|
σλ0

)
, ψ1(θ, σ) =

1√
2πσ2λ1

exp

(
− θ2

2σ2λ1

)
,

where λ0 > 0 denotes a scaling parameter that encourages the shrinkage of irrelevant parameters and
λ1 is often set to a large value for a standard regularization [Rořková and George, 2014].

An empirical Bayesian approach. Suppose L(Fn+1|θ, σ2) is the likelihood function where Zn is
the historical data. According to the Bayes rule, the full posterior follows

p(θ,γ|Fn+1, σ
2, β) ∝ L(Fn+1|θ, σ2)ρ(θ|γ, σ2)ρ(γ|β) . (6.2)

To speed up the sampling, we only sample θ and optimize γ with respect to the posterior instead. To
tackle this issue of the binary vector γ, we consider a continuous relaxation by introducing a latent
vector ν ∈ [0, 1]d as the probability of the variable being included in the model. We focus on the
simulations of the conditional expectation of the complete posterior:

Eγ|·
[
log p(θ,γ|Fn+1, σ

2, β)
]

= logL(Fn+1|θ, σ2) + Eγ|·
[
log ρ(γ|β) + log ρ(θ|γ, σ2)

]
+ C1 ,

where C1 is the normalizing constant and Eγ|·[·] denotes the the conditional expectation with respect
to γ given the current parameter θ. Then we compute

Eγ|· [log ρ(γ|β)] =

d∑
i=1

Eγ|· [γi log(β) + (1− γi) log(1− β)] =

d∑
i=1

log

(
β

1− β

)
νi + C2 ,

where C2 = d log(1− β) and νi = Eγ|·[γi] denotes a conditional probability. By the Bayes rule, we
have

νi = P(γi = 1|θi, β) =
ρ(θi|γi = 1)P(γi = 1|β)

ρ(θi|γi = 1)P(γi = 1|β) + ρ(θi|γi = 0)P(γi = 0|β)
. (6.3)

For the mixture prior, we optimize the variational lower bound

Eγ|·[log ρ(θ|γ, σ2)] ≥
d∑
j=1

−1− νj
λ0

|θj |
σ
− νj
λ1

θ2
j

2σ2
+ C3 ,

where the inequality follows by Jensen’s inequality and C3 denotes a trivial constant.

We summarize the full sampling procedure in Algorithm 1. Given a current estimate of (θ(k), ν(k)) at
step k and Fn+1, we adapt an empirical Bayesian method [Deng et al., 2019] by iteratively sampling
θ based on the negative log-posterior with adaptive priors

Q(θ|θ(k), ν(k),Fn+1) = − logL(Fn+1|θ, σ2) +

d∑
i=1

(
1− ρi
λ0

|θi|
σ

+
ρi
λ1

θ2
i

2σ2

)
,
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and optimizing the conditional probability ν through stochastic approximation algorithms (Robbins
and Monro [1951]) until the equilibrium is achieved.
Remark 6.2. Algorithm 1 will need to output M posterior samples. Suppose we run a Markov Chain
for 100 steps (k = 1, 2, . . . , 100) and want 10 posterior samples. Setting the thinning factor T = 10
means every 10 steps, we pick a θk as the required posterior sample, e.g., θ10, θ20, . . . , θ100.

Algorithm 1 Empirical Bayesian sparse sampling
1: Input: dataset Fn+1, learning rate (ηk), step size (ωk), a priori knowledge of σ2 and β, thinning

factor T , number of posterior samples M , regularization parameters λ0, λ1.
2: Initialize: θ(0) ∼ N(0, 0.1Id) and ν(0) = (0.5, . . . , 0.5)>.
3: for k ≥ 1 do
4: Sampling step: θ(k+1) = θ(k) − ηk

∂
∂θQ(θ|θ(k), ν(k),Fn+1) +

√
2ηkξ

(k), where ξ(k) is a
standard Gaussian random vector.

5: Stochastic approximation step: ν(k+1) = (1 − ωk)ν(k) + ωkν, where ν is derived from
Eq. (6.3).

6: end for
7: Output: M posterior samples θ(T ), θ(2T ), . . . , θ(MT ).

6.2 Optimize the information ratio

For sparse linear bandits, it is expensive to estimate and optimize the original information ratio that
involves the calculation of KL-divergence. Following Section 6.3 in Russo and Van Roy [2018],
we optimize a variance-based information ratio instead: πt = argminπ(∆>t π)2/(2v>t π), where
we define vt(a) = Et[a>Et[θ∗|x∗] − a>Et[θ∗]]2 for each a ∈ A. With sufficient number of
posterior samples of θ∗ produced by Algorithm 1, we can accurately estimate Et[θ∗|x∗],Et[θ∗] and
the information ratio. The detailed procedure is deferred to Appendix B. For the optimization step,
we simply choose the action who can has the minimum per-action variance-based information ratio
to accelerate the computation. The overall algorithm can be found in Algorithm 2.

Algorithm 2 Sparse IDS
1: Input: time horizon n, action set A, number of posterior samples per round M .
2: for t = 1, · · · , n do
3: Obtain M posterior samples θ1, . . . , θM by Algorithm 1.
4: Calculate ∆̂t ∈ R|A| and v̂t ∈ R|A| using Algorithm 3 in Appendix B.
5: Take the action At = argmina∈A ∆̂2

t (a)/v̂t(a) and receive a reward: Yt = 〈At, θ∗〉+ ηt.
6: end for

Remark 6.3. While sparse IDS is computationally efficient, we only have samples from approximate
posterior distribution rather than the exact one. This will incur a non-negligible approximation error
that may depend linearly on the time horizon. This is observed previously by analyzing approximate
Thompson sampling [Lu and Van Roy, 2017] or more recently for IDS [Lu et al., 2021].

7 Experiments

First, we evaluate the performance of the empirical Bayesian sparse sampling procedure for generating
posterior samples through an offline sparse linear regression. We set d = 10, s = 3, n = 100 and the
actions are drawn i.i.d from a multivariate normal distribution N(0,Σ) with Σij = 0.6|i−j|. The true
parameter is θ∗ = (3, 2, 0, 0, . . . , 0) ∈ R10. We plot the empirical posterior distributions as well as
their posterior mean for the first three covariates in Figure 1. It shows that the posterior distribution
concentrates well around the true value and the algorithm identifies the sparse pattern quickly.

Second, we evaluate sparse IDS with several other competitors. In particular, we compare with
LinUCB [Abbasi-Yadkori et al., 2011], LinTS with Gaussian prior [Agrawal and Goyal, 2013], IDS
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Figure 1: Posterior distributions for the first three coordinates. The red lines are posterior means.

Figure 2: The left panel is the cumulative regret and the right panel is the histogram of number of
pulls for informative actions. It’s clear that sparse TS does not value information enough as it should.

for linear bandits (Algorithm 6 in Russo and Van Roy [2018]) and ESTC [Hao et al., 2020b]. Note
that the first three algorithms are not sparsity-aware. Our sparse sampling procedure naturally induces
a sparse TS algorithm so we include it into comparison.

Setting All the true parameters are randomly generated from a multivariate normal distribution,
truncated to be sparse and normalized to have square norm 1. The noise variance is fixed to be 2 and
we replicate the experiments over 200 trials. We plot the empirical cumulative Bayesian regret. Each
Bayesian algorithm will take 10000 posterior samples. We use the TS without blow-up factor for the
variance and tune the length of confidence interval of LinUCB over a candidate set.

Hard sparse linear bandits instance Consider the hard problem instance introduced in Section
4 that includes informative and uninformative action sets and set d = 10, s = 2. For each trial,
we record the number of pulls of sparse TS and sparse IDS for informative actions. We draw the
histogram of number of pulls during 200 trial in Figure 2. It is clear that IDS tends to invest more on
the informative action sets but suffer less regret than TS if there exists an information-regret trade-off
phenomenon.

Multivariate Gaussian action set We consider a more general case where each action is generated
from multivariate normal distribution N(0,Σ) with Σij = 0.6|i−j|. The number of actions K is
fixed to be 200 and the level of sparsity s/d is fixed to be 0.1. We report the results in Figure 3 for
d = 20, 40, 100. It is obvious that sparse IDS consistently outperforms other algorithms and the
improvement increases as the feature dimension increases.

Figure 3: Cumulative regret for d = 20, 40, 100.
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8 Conclusion

In this work, we investigate the theoretic and practical applicability of information-directed sampling
for sparse linear bandits. An interesting future direction is to extend similar ideas to sparse linear
contextual bandits.
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